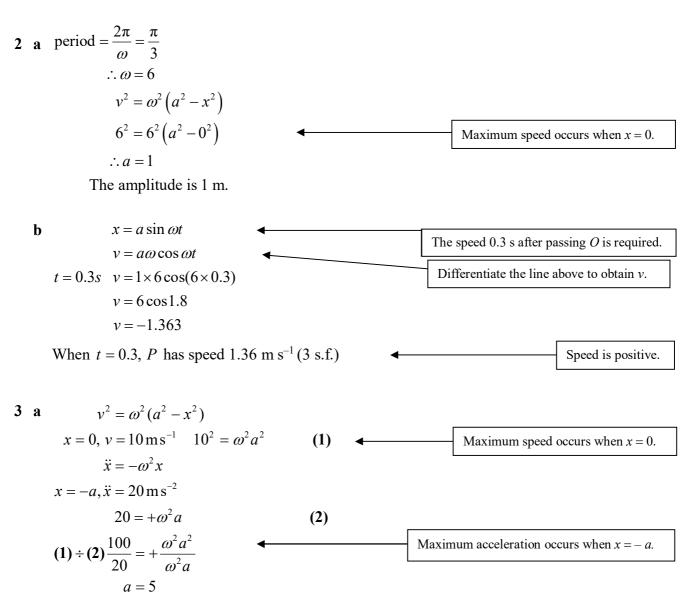
Mechanics 3 Solution Bank



Exercise 3C

1 a
$$v^2 = \omega^2 (a^2 - x^2)$$

 $a = 0.5, \quad x = 0 \quad v = 2$
 $2^2 = \omega^2 \times 0.5^2$
 $\omega = \frac{2}{0.5} = 4$
period $= \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$
The period is $\frac{\pi}{2}$ s.

b
$$x = 0.2 \text{ m}$$
 $v^2 = 4^2 (0.5^2 - 0.2^2)$
 $v = 1.833...$

When OP = 0.2 m the speed of P is 1.83 m s⁻¹ (3 s.f.)

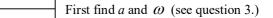
The amplitude is 5 m.

Mechanics 3 Solution Bank

3 b Using (1) $10 = a\omega$ $10 = 5\omega$ $\omega = 2$ period $= \frac{2\pi}{\omega} = \pi$ The period is π s.

4 period =
$$\frac{2\pi}{\omega} = \frac{3\pi}{5}$$

 $\omega = \frac{10}{3}$
 $v^2 = \omega^2 (a^2 - x^2)$
 $v^2 = \left(\frac{10}{3}\right)^2 (0.4^2 - 0)$
 $v = \frac{10}{3} \times 0.4 = \frac{4}{3}$


The maximum speed is
$$\frac{4}{3}$$
 m s⁻¹.

5
$$\ddot{x} = -\omega^2 x$$

 $\ddot{x} = 15 \text{ m s}^{-2}, x = a$
 $15 = \omega^2 a$ (1)
 $v^2 = \omega^2 (a^2 - x^2)$
 $v = 18 \text{ m s}^{-1}, x = 0$ $18^2 = \omega^2 a^2$ (2)
(2) ÷ (1) $\frac{18^2}{15} = \frac{\omega^2 a^2}{\omega^2 a}$
 $a = \frac{18^2}{15} = 21.6$
Using (2) $a\omega = 18$
 $\omega = \frac{18}{21.6} = 0.8333...$
 $v^2 = \omega^2 (a^2 - x^2)$
 $v^2 = 0.833...^2 (21.6^2 - 2.5^2)$

The speed is 17.9 m s^{$$-1$$} (3 s.f.)

v = 17.87...

Maximum speed occurs when x = 0.

INTERNATIONAL A LEVEL Mechanics 3 Solution Bank 6 a period = $\frac{2\pi}{\omega} = \frac{\pi}{2}$ Use the period to find ω . $\omega = 4$ $v^2 = \omega^2 (a^2 - x^2)$ Then use $v^2 = \omega^2 (a^2 - x^2)$ with $x = 1.2 \,\mathrm{m}$ $v = 1.5 \,\mathrm{ms}^{-1}$ x = 1.2 and v = 1.5 to find *a*. $1.5^2 = 4^2(a^2 - 1.2^2)$ $a^2 = \frac{1.5^2}{4^2} + 1.2^2$ *a* =1.257... The amplitude is 1.26 m (3 s.f.).

x = 0.01407...

 $OA = 0.0141 \,\mathrm{m}(3 \,\mathrm{s.f.})$

b $x = a \sin \omega t$ Use $x = a \sin \omega t$ as x = 0 when t = 0. $x = 1.26 \sin 4t$ 7 **a** period = $\frac{2\pi}{m} = \frac{1}{6}$ The period is the time for one complete oscillation. $\omega = 12\pi$ $v^2 = \omega^2 (a^2 - x^2)$ $5^2 = (12\pi)^2 (a^2 - 0)$ $a = \frac{5}{12\pi} = 0.1326...$ You are told the magnitude The amplitude is 0.133 m (3 s.f.) of the acceleration at A. b $\ddot{x} = -\omega^2 x$ $20 = |-12^2 \pi^2 | x$ $x = \frac{20}{144\pi^2}$

3

P Pearson

Mechanics 3 Solution Bank

8

Solution Bank
8 a
$$v^2 = \omega^2(a^2 - x^2)$$

 $x = 0.6 \text{ m}, v = 3 \text{ m} \text{ s}^4$
 $3^2 = \omega^2(a^2 - 0.6)^2$ (1)
 $x = 0.2 \text{ m}, v = 6 \text{ m} \text{ m}^{-1}$
 $6^2 = \omega^2(a^2 - 0.2)^2$ (2)
(2) : (1) $\frac{6^2}{3^2} = \frac{\omega^2(a^2 - 0.2^2)}{a^2(a^2 - 0.6^2)}$
 $4(a^2 - 0.6^2) = a^2 - 0.2^2$
 $3a^2 = 4 \times 0.6^2 - 0.2^2$
 $a^2 = \frac{4 \times 0.6^2 - 0.2^2}{3}$
 $a = 0.6831...$
The distance *AB* is 1.37 m (3 s.f.)
b Using (1) $9 = \omega^2(0.6831^2 - 0.6^2)$
 $\omega^2 = \frac{9}{(0.6831^2 - 0.6^2)}$
 $\omega = 9.187$
period $= \frac{2\pi}{\omega} = \frac{2\pi}{9.187} = 0.6838...$
The period is 0.684s (3 s.f.).
9 a period $= \frac{2\pi}{\omega} = 2\pi$
 $\omega = 1$
 $v^2 = \omega^2(a^2 - x^2)$
 $x = 1 \text{ m}, v = 0.1 \text{ ms}^{-1}$
 $0.1^2 = 1^2(a^2 - 1^2)$
 $a^2 = 0.1^2 + 1^2$
 $a = 1.004...$
 $v_{\text{max}} = \omega a$
 $= 1 \times 1.004...$
Maximum speed occurs when $x = 0$.

The maximum speed is 1.00 m s⁻¹ (3 s.f.).

b
$$v^2 = 1(1.004^2 - 0.4^2)$$

 $v = 0.9219...$

The speed is $0.922 \text{ m s}^{-1}(3 \text{ s.f.})$.

Mechanics 3 Solution Bank Pearson **10** $a = \frac{2.5}{2} = 1.25$ $\text{Period} = \frac{2\pi}{\omega} = \frac{60}{30} = 2$ 30 oscillations per minute \Rightarrow 2s for 1 oscillation $\omega = \pi$ $v_{\rm max} = a\omega$ $=1.25\times\pi$ maximum K.E. = $\frac{1}{2}mv_{\text{max}}^2$ $=\frac{1}{2}\times1.2\times1.25^2\times\pi^2$ = 9.252... The maximum K.E. is 9.25J (3s.f.). **11 a** $a = 0.8 \div 2 = 0.4 \,\mathrm{m}$ The amplitude is half the distance

period =
$$\frac{2\pi}{\omega} = 2$$

 $\omega = \pi$
 $v^2 = \omega^2 (a^2 - x^2)$
 $x = 0$ $v = \omega a$
 $v = \pi \times 0.4$
 $v = 1.256...$

between the highest and lowest points.

The maximum speed is 1.26 m s⁻¹ (3 s.f.).

b 0.6 m from highest point

$\Rightarrow x = -0.2 \mathrm{m}$	The buoy is now below the centre.
$x = a \cos \omega t$	You want the time from the highest point.
$-0.2 = 0.4 \cos \pi t$	
$\cos \pi t = -0.5$	
$t=\frac{1}{\pi}\cos^{-1}\left(-0.5\right)$	
$t = \frac{1}{\pi} \times \left(\pi - \frac{\pi}{3}\right)$	
$t = \frac{2}{3}$	
The buoy takes $\frac{2}{3}$ s to fall 0.6 m.	

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

MTERNATIONAL A LEVEL
Mechanics 3 Solution Bank
12
$$0$$
 0.2 m 4 0.1 m B
period $= \frac{2\pi}{\omega} = 2$
 $\therefore \omega = \pi$
 $x = a \sin \omega \pi$
 $x = a \sin \omega \pi$
 $x = 0.5 \sin \pi t$
 $x = 0.5 \sin \pi t$
 $x = 0.2 \text{ m} 0.2 = 0.5 \sin \pi t$
 $\pi t = \sin^{-1} \left(\frac{0.2}{0.5}\right) = \sin^{-1} \left(\frac{2}{5}\right)$
 $x = 0.3 \pi t_2 = \sin^{-1} \left(\frac{3}{5}\right)$
 $\sin \alpha \to B = t_2 - t_1$
 $= \frac{1}{\pi} \left(\sin^{-1} \left(\frac{3}{5}\right) - \sin^{-1} \left(\frac{2}{5}\right)\right)$
 $= 0.07384...$
The time to move directly from A to B is 0.0738 s (3 s.f.).
13a $x = 4 \sin 2t$
 $\dot{x} = 3\cos 2t$
 $\ddot{x} = -4(4\sin 2t)$
 $\ddot{x} = -4x$
 $\therefore S.H.M.$
b amplitude = 4 m
period $= \frac{2\pi}{2} = \pi s$
 c $v^2 = \omega^2(\alpha^2 - x^2)$
 $x = 0$ $v^2 = 4(4^2 - 0)$
 $v = 8$
The maximum speed is 8 m s⁻¹.
d $x = 4\sin 2t$
 $\dot{x} = 4\cos 2t$
 $\dot{x} = 4 \cos 2t$
 $\dot{x} = 4 \sin^{-2} t 4 = 8\cos 2t$
 $\dot{x} = 4 \sin^{-2} t 4 = 8\cos 2t$
 $\dot{x} = 4 \sin^{-2} t 4 = 8\cos 2t$
 $\dot{x} = 4 \tan^{-1} 4 = 8\cos 2t$
 $\dot{x} = \frac{1}{2} \cos^{-1} 0.5$
 $t = \frac{1}{2} \sqrt{\frac{1}{3}}$

Mechanics 3 Solution Bank

13 e
$$x = 4 \sin 2t$$
$$x = 2 \quad 2 = 4 \sin 2t$$
$$\sin 2t = 0.5$$
$$t = \frac{1}{2} \sin^{-1} 0.5$$
$$t = \frac{1}{2} \times \frac{\pi}{6}$$
The least value of t is $\frac{\pi}{12}$.

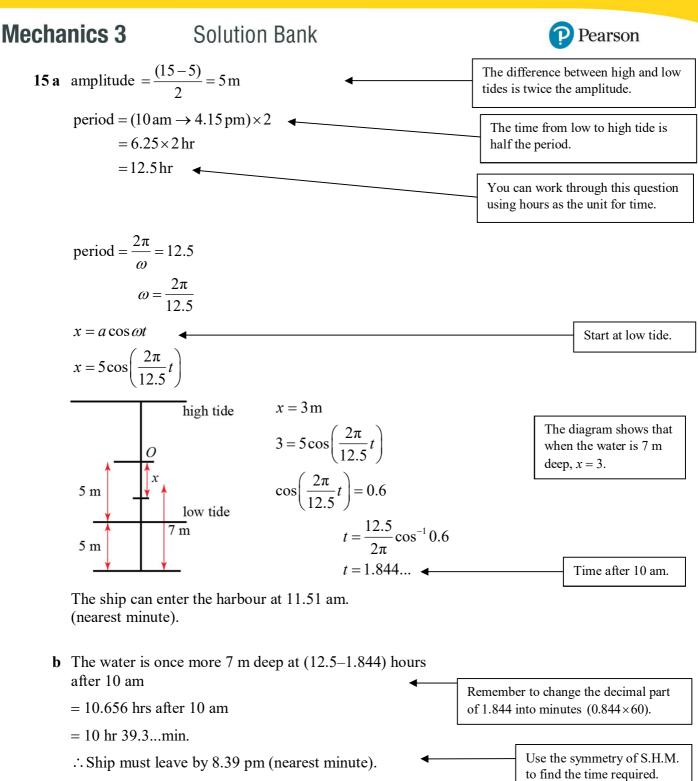
14 a
$$x = 3\sin\left(4t + \frac{1}{2}\right)$$

 $\dot{x} = 12\cos\left(4t + \frac{1}{2}\right)$
 $\ddot{x} = -48\sin\left(4t + \frac{1}{2}\right)$
 $\ddot{x} = -16x$
 \therefore S.H.M.

b amplitude = 3 m period = $\frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$ s

$$\mathbf{c} \quad t = 0 \quad x = 3\sin\left(\frac{1}{2}\right)$$
$$= 1.438...$$

When t = 0, x = 1.44 (3 s.f.)


d
$$x = 0$$
 $0 = 3\sin\left(4t + \frac{1}{2}\right)$
 $\sin\left(4t + \frac{1}{2}\right) = 0$
 $4t + \frac{1}{2} = 0, \pi, ...$
 $4t = \left(0 - \frac{1}{2}\right), \left(\pi - \frac{1}{2}\right), ...$
 $t = -\frac{1}{8} (\text{not applicable})$
 $t = \frac{1}{4} \left(\pi - \frac{1}{2}\right) = 0.6603...$

The value of *t* is 0.660 (3 s.f.).

Compare with $x = a \sin(\omega t + \varepsilon)$ to obtain *a* and ω .

Pearson

INTERNATIONAL A LEVEL

INTERNATIONAL A LEVEL

Mechanics 3	Solution Bank	Pearson
$16 \frac{1}{A} = 0.4 \text{ m}$	0 0.5 m B	
period = $\frac{2}{a}$	$\frac{\pi}{\omega} = 4$	
	$\omega = \frac{\pi}{2}$ $x = a \sin \omega t$ $x = 0.75 \sin \frac{\pi}{2} t$	Find the time taken from O to B (using $x = 0.5$ m) and from O to the point where $x = 0.4$ m.
	$0.5 = 0.75 \sin \frac{\pi}{2} t$ $n \frac{\pi t}{2} = \frac{0.5}{0.75}$	
	$t = \frac{2}{\pi} \sin^{-1} \left(\frac{0.5}{0.75} \right)$	
$x = 0.4 \mathrm{m}$	$t = \frac{2}{\pi} \sin^{-1} \left(\frac{0.4}{0.75} \right)$	
Time $B \rightarrow A$ = $\frac{2}{\pi} \bigg[\sin^{-1} \bigg(\frac{0}{0.} \bigg) \bigg]$ = 0.8226	$\left[\frac{.5}{75}\right] + \sin^{-1}\left(\frac{0.4}{0.75}\right)$	Adding these times will give the time to go directly from <i>B</i> to <i>A</i> due to the symmetry of S.H.M.

P takes 0.823s to travel directly from B to A (3 s.f.)

Challenge

$$\ddot{x} = -\omega^{2}x \qquad v^{2} = \omega^{2} \left(a^{2} - x^{2}\right)$$

$$v_{1}^{2} = \omega^{2} \left(a^{2} - x_{1}^{2}\right) \quad (1)$$

$$v_{2}^{2} = \omega^{2} \left(a^{2} - x_{2}^{2}\right) \quad (2)$$

$$(2) - (1): v_{2}^{2} - v_{1}^{2} = \omega^{2} \left(a^{2} - x_{2}^{2}\right) - \omega^{2} \left(a^{2} - x_{1}^{2}\right)$$

$$v_{2}^{2} - v_{1}^{2} = \omega^{2} \left(a^{2} - x_{2}^{2} - a^{2} + x_{1}^{2}\right)$$
Rearranging gives $\omega^{2} = \frac{v_{2}^{2} - v_{1}^{2}}{x_{1}^{2} - x_{2}^{2}}$ so $\omega^{2} = \left(\frac{v_{2}^{2} - v_{1}^{2}}{x_{1}^{2} - x_{2}^{2}}\right)^{\frac{1}{2}}$

$$T = \frac{2\pi}{\omega} = 2\pi \left(\frac{x_{1}^{2} - x_{2}^{2}}{v_{2}^{2} - v_{1}^{2}}\right)^{\frac{1}{2}}$$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.