Mechanics 3 Solution Bank

Exercise 3B

1 $F = \frac{k}{d^2}$ *d* $=\frac{\pi}{a^2}$ where *d* = distance from centre distance $(x - R)$ above surface \Rightarrow distance *x* from centre \mathbf{h}

$$
\therefore F = \frac{k}{x^2}
$$

On surface $F = mg$, $x = R$

$$
\therefore mg = \frac{k}{R^2}
$$

$$
k = mgR^2
$$

: Magnitude of the gravitational force is $\frac{1}{2}$. *mgR x*

The magnitude of the gravitational force on a particle on the surface of the earth is the magnitude of the weight of the particle.

2 For a particle of mass *m*, distance *x* from the centre of the earth:

$$
F = ma
$$
\n
$$
\frac{k}{x^2} = mA
$$
\nUse the inverse square law.

2

On the surface of the earth, $x = R$, $A = g$

$$
\therefore mg = \frac{k}{R^2}
$$

$$
k = mgR^2
$$

$$
\therefore mA = \frac{mgR^2}{x^2}
$$

$$
A = \frac{gR^2}{x^2}
$$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 1

Mechanics 3

Solution Bank

 $\ddot{x} = v \frac{dv}{dx}$ as the acceleration is a

3 $F = ma$ 2 2 $\frac{mgR^2}{2} = -m\ddot{x}$ *x* $=-m\ddot{x}$

S is moving away from the earth, so the acceleration is in the direction of decreasing *x*.

Use $\ddot{x} = v \frac{d}{d}$

function of *x*.

where *x* is the distance of *S* from the centre of the Earth.

$$
v \frac{dv}{dx} = -g \frac{R^2}{x^2}
$$

\n
$$
\int v dv = -g R^2 \int \frac{1}{x^2} dx
$$

\n
$$
\frac{1}{2} v^2 = g \frac{R^2}{x} + C
$$

\n
$$
x = 2R : v = \sqrt{g R}
$$

\n
$$
\frac{1}{2} gR = \frac{gR^2}{2R} + C
$$

\n
$$
C = 0
$$

\n
$$
\frac{1}{2} v^2 = \frac{gR^2}{x}
$$

\n
$$
x = R : \frac{1}{2} v^2 = \frac{gR^2}{R}
$$

\n
$$
v^2 = 2g R
$$

\n
$$
v = \sqrt{2g} R
$$

S was fired with speed $\sqrt{2gR}$.

When it has travelled *X* meters, the speed of the rocket is

$$
\sqrt{\left[\frac{U^2X+U^2R-2g\,RX}{\left(X+R\right)}\right]}
$$

INTERNATIONAL A LEVEL Mechanics 3 Solution Bank Pearson 2 $\ddot{x} = -\frac{g R^2}{2}$ The acceleration is in the direction of **5** $\ddot{x} = -$ 2 decreasing *x*. *x* 2 $v \frac{dv}{dt} = -\frac{g R^2}{r^2}$ d $=-$ 2 d $x \rightarrow x^2$ Use $\ddot{x} = v \frac{d}{d}$ $\ddot{x} = v \frac{dv}{dx}$ as the acceleration is a $v dv = -gR^2 \int \frac{1}{2} dx$ $\int v dv = -gR^2 \int \frac{d^2y}{x^2}$ 2 function of *x*. 2 1_{1^2} gR^2 $v^2 = \frac{gR^2}{r} + c$ $=\frac{\delta R}{\epsilon}+$ 2 *x* $x = R$ $v^2 = 3g R$ $\frac{1}{2} \times 3g R = \frac{gR^2}{2}$ $g R = \frac{gR^2}{2} + C$ \therefore $\frac{1}{2} \times 3g R = \frac{8R}{1} +$ 2 *x* 1 $C = \frac{1}{2} g R$ 2 $v^2 = \frac{2gR^2}{r} + gR$ $\therefore v^2 = \frac{2 \mathcal{E}^H}{\sqrt{2}} +$ *x* At a height 4*R* above the Earth's surface, When $x = 5R$ $x = 5R$. $2\sqrt{2}$ $2gR^2$ $v^2 = \frac{2g R^2}{5R} + g R$ $=\frac{28 \pi}{12}+$ 5 *R* $v^2 = \frac{7g R}{5}$ $2\sqrt{7}$ 5

.. The speed at a height 4*R* above the Earth's surface is $\sqrt{\frac{7gR}{5}}$. 5 *g R*

INTERNATIONAL A LEVEL

The particle hits the surface of the Earth's with speed $2\sqrt{\frac{gR}{3}}$. *gR*

7 **a**
$$
F \propto \frac{1}{x^2}
$$

\n $F = \frac{k}{x^2}$
\nWhen $x = R$, $F = mg$
\nSo $mg = \frac{k}{R^2}$
\n $k = mgR^2$
\n $F = \frac{mgR^2}{x^2}$

INTERNATIONAL A LEVEL

Mechanics 3 Solution Bank

7 b Applying $'F = ma'$ 2 2 d d $mv\frac{dv}{dt} = -\frac{mgR}{r^2}$ $x \rightarrow x^2$ $=-\frac{mgR}{r}$ 2 2 d d $v \frac{dv}{dt} = -\frac{gR}{2}$ $x \rightarrow x^2$ $=-$ Separating the variables and integrating: 2 2 $2 gR$ 4 $dv = -\int \frac{\delta^{4}f}{\delta} dx$ *V R gR R* $vdv = -\int_{0}^{R} \frac{gR^2}{r^2} dx$ $\int_{\partial R} v dv = - \int_{4R} \frac{gR}{x^2} dx$ 2 \vert^r \vert αD^2 $2\left.\right\rfloor _{\sqrt{2gR}}$ $\left.\right\lfloor x\left.\right\rfloor _{41}$ $V = \square$ ₂ $\neg R$ *gR R* v^2 $|$ gR *x* $\left[\frac{v^2}{2}\right]_{\sqrt{2gR}} = \left[\frac{gR^2}{x}\right]^n$ 2 αD^2 αD^2 2 δ R 4 $\frac{V^2}{g} - gR = \frac{gR^2}{R} - \frac{gR}{4R}$ *R R* $-gR = \frac{\mathcal{S}^R}{R} - \frac{\mathcal{S}^R}{4R}$ 2 2 4 $\frac{V^2}{2}$ – gR = gR – $\frac{gR}{4}$ ² $\sqrt{2}$ 3 2 4 $\frac{V^2}{2} - gR = \frac{3gR}{4}$ 2 7 2 4 $\frac{V^2}{2} = \frac{7gR}{4}$ $2\sqrt{7}$ 2 $V^2 = \frac{7gR}{2}$ 7 $V = \sqrt{\frac{7gR}{g}}$

Challenge

a Consider a mass *m* resting on the earth's surface. Suppose the earth has mass M_E .

Then by Newton's law of gravitation:

r Rearranging gives:

 $mg = \frac{GmM_E}{r^2}$

 $=$

2

$$
M_{E} = \frac{gr^{2}}{G}
$$

\n
$$
M_{E} = \frac{9.81 \times (6.3781 \times 10^{6})^{2}}{6.67 \times 10^{-11}}
$$

\n
$$
M_{E} = 5.98 \times 10^{24} \text{ kg}
$$

b density =
$$
\frac{\text{mass}}{\text{volume}}
$$

= $\frac{M_E}{\frac{4}{3}\pi r^3}$
= $\frac{5.983 \times 10^{24}}{\frac{4}{3}\pi \times (6.3781 \times 10^6)^3}$
= 5500 kg m⁻³ (3 s.f.)