GCE Examinations Advanced Subsidiary / Advanced Level # Mechanics Module M3 # Paper E ### **MARKING GUIDE** This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks. Method marks (M) are awarded for knowing and using a method. Accuracy marks (A) can only be awarded when a correct method has been used. (B) marks are independent of method marks. Written by Shaun Armstrong & Chris Huffer © Solomon Press These sheets may be copied for use solely by the purchaser's institute. #### M3 Paper E - Marking Guide 1. (a) $$\mathbf{a} = \frac{d}{dt}(\mathbf{v}) = (2e^{2t}\mathbf{i} + 2\mathbf{j}) \text{ cm s}^{-2}$$ M1 A1 (b) $$2e^{2t}\mathbf{i} + 2\mathbf{j} = k(4\mathbf{i} + \mathbf{j})$$, comparing **j** components, $k = 2$ $\therefore 2e^{2t} = 8$, $t = \frac{1}{2} \ln 4 = 0.69$ s (2sf) M1 A1 M1 A1 (c) e.g. predicts $$\mathbf{v}$$, \mathbf{a} increasing to very large values **B**1 **(7)** 2. (a) work done = $$\int_0^1 5 + 4e^{-x} dx = [5x - 4e^{-x}]_0^1$$ = $(5 - 4e^{-1}) - (0 - 4) = 9 - 4e^{-1} = 7.53 \text{ J (3sf)}$ M1 A1 M1 A1 (b) work done = change in KE $$\therefore 9 - 4e^{-1} = \frac{1}{2} \times 0.4 \times (v^2 - 2^2)$$ M1M1 A1 giving $v = 6.45 \text{ m s}^{-1} (3\text{sf})$ A1 **(8)** 3. (a) resolve $$\uparrow$$: $T \cos 60^{\circ} - mg = 0$ M1 $$\therefore \frac{1}{2} T = 0.1 \times 9.8$$ A1 giving $T = 1.96$ N (b) resolve $$\leftarrow$$: $T \sin 60^\circ = mr\omega^2$ let length of string = l :: $r = l \sin 60^\circ$ so $1.96 = 0.1 \times l \times 4^2$ giving $l = 1.225$ m M1 A1 M1 A1 **A**1 **(8)** 4. (a) $$\ddot{x} = -\omega^2 x$$ \therefore 0.12 = $|-\omega^2 \times 0.03|$ giving $\omega = 2$ period = $\frac{2\pi}{\omega} = \pi$ seconds M1 A1 M1 A1 $v^2 = \omega^2 (a^2 - x^2)$:: $0.08^2 = 2^2 (a^2 - 0.03^2)$ (b) giving a = 0.05 m or 5 cm M1 A1 **A**1 (c) $$v_{\text{max}} = \omega a = 2 \times 0.05 = 0.1 \text{ ms}^{-1} \text{ or } 10 \text{ cm s}^{-1}$$ M1 A1 **(9)** 5. $$(a)$$ by symmetry **B**1 by Pythag. distance of object from A = 1.25 M1 $$T = \frac{\lambda x}{l} = \frac{280 \times 0.25}{1} = 70$$ M1 A1 resolve $$\uparrow$$: $2T \sin \alpha - mg = 0$ $\sin \alpha = \frac{7}{25}$ $\therefore 2 \times 70 \times \frac{7}{25} = m \times 9.8$ M1 A1 M1 giving $$m = 4 \text{ kg}$$ A₁ (c) EPE = $$2 \times \frac{\lambda x^2}{2l} = 2 \times \frac{280 \times 0.25^2}{2 \times 1} = 17.5 \text{ J}$$ M1 A1 **(10)** 6. (a) $$\overline{x} \times \int_0^1 \rho \pi y^2 \, dx = \int_0^1 \rho \pi y^2 x \, dx \quad \therefore \overline{x} \times \int_0^1 y^2 \, dx = \int_0^1 y^2 x \, dx$$ B1 $$\int_0^1 y^2 \, dx = \int_0^1 (x^2 + 1)^2 \, dx = \int_0^1 (x^4 + 2x^2 + 1) \, dx$$ M1 A1 $$= \left[\frac{1}{5} x^5 + \frac{2}{3} x^3 + x \right]_0^1 = \frac{28}{15}$$ M1 A1 $$\int_0^1 y^2 x \, dx = \int_0^1 x(x^2 + 1)^2 \, dx = \int_0^1 (x^5 + 2x^3 + x) \, dx$$ M1 $$= \left[\frac{1}{6} x^6 + \frac{1}{2} x^4 + \frac{1}{2} x^2 \right]_0^1 = \frac{7}{6}$$ M1 A1 $$\therefore \overline{x} = \frac{7}{6} \div \frac{28}{15} = \frac{5}{8}, \ \overline{y} = 0 \text{ by symmetry } \therefore \text{ coords are } (\frac{5}{8}, 0)$$ M1 A1 (b) $$\tan \alpha = \frac{1 - \frac{5}{8}}{2} = \frac{3}{16}$$ M1 A1 $$\therefore \alpha = 11^{\circ} \text{ (nearest degree)}$$ A1 (13) 7. (a) full circles if $T \ge 0$ at max height **B**1 resolve \downarrow : $T + mg = \frac{mv^2}{r}$: $\frac{mv^2}{0.6} \ge mg$ M1 A1 con. of ME: $\frac{1}{2} m(u^2 - v^2) = mg \times 1.2$ M1 A1 $\therefore v^2 = u^2 - 2.4g$ M1combining, $\frac{u^2-2.4g}{0.6} \ge g$ M1giving $u^2 \ge 3g$: $u \ge \sqrt{3g}$ Α1 (b) M1 A1 resolve $$\wedge$$: $T - mg \cos \theta = \frac{mv^2}{r}$ M1 when slack, $T = 0$ $\therefore v^2 = {}^{-}0.6g \cos \theta$ A1 mg con. of ME: $\frac{1}{2}m(u^2 - v^2) = 0.6mg(1 - \cos \theta)$ M1 A1 $\therefore v^2 = 25 - 1.2g(1 - \cos \theta)$ M1 combining, ${}^{-}0.6g \cos \theta = 25 - 1.2g(1 - \cos \theta)$ M1 giving $\cos \theta = \frac{1.2g - 25}{1.8g}$ $\therefore \theta = 139^\circ$ (nearest deg) A1 (c) $$v^2 = {}^-0.6g(\frac{1.2g-25}{1.8g})$$ giving $v^2 = 4.413$ M1 vertically: $u = \sqrt{4.413} \sin 41^\circ$, $a = {}^-g$, $v = 0$ (for greatest height) M1 using $v^2 = u^2 + 2as$, $0 = 4.413 \sin^2 41^\circ - 2gs$ M1 A1 giving $s = 0.098$ m = 10 cm (nearest cm) A1 (20) Total (75) ## Performance Record – M3 Paper E | Question no. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total | |--------------|-----------------|------------------------------------|--------------------|-----|---------------------------|---|-----------------------------------|-------| | Topic(s) | variable accel. | variable
force,
work
done | circular
motion | SHM | elastic
string,
EPE | centre of
mass by
integr.,
equilm. | motion in
a vertical
circle | | | Marks | 7 | 8 | 8 | 9 | 10 | 13 | 20 | 75 | | Student |