

June 2005

Final Version

6679 Mechanics M3 Mark Scheme

The following abbreviations are used in this scheme.

M A method mark. These are awarded for 'knowing a method and attempting to apply it'.

A An accuracy mark. Can only be awarded if the relevant method mark(s) have been earned.

B These marks are independent of method marks.

cso correct solution only. There must be no errors in this part of the question to obtain this mark.

cao correct answer only.

ft follow through. The scheme or marking guidance will specify what is to be followed through.

oe or equivalent.

awrt answers which round to

-The second mark is dependent on gaining the first mark.

N2L Newton's second law LHS Left hand side of an equation

LM Linear momentum RHS Right hand side of an equation

HL Hooke's Law. EPE Elastic potential energy

 \rightarrow , \downarrow etc. Resolving in the appropriate direction

M(A) Taking moments about A.

* The answer is printed on the paper.

Question Number	Schem	ne	Marks
1.	T_{α} mg	HL $T = \frac{20 \times 0.4}{2}$ (= 4) accept -4 [$mg \sin \alpha + T = ma$ $0.8g \times 0.6 + 4 = 0.8a$ $a = 10.88 \approx 10.9 \text{ (m s}^{-2}\text{)}$ accept 11	M1 A1 M1 A1 A1

Question Number				Scheme)		Marks
2.	(a)	Mass ratio \overline{y}	Bowl 2 $\frac{1}{2}a$	Lid 1 0	C 3 \overline{y}	anything in ratio 2:1:3	B1 B1
		M(<i>O</i>)		$a = 3\overline{y}$ $a = \frac{1}{3}a *$		cso	M1 A1
	(b)		R \overline{y} A A Mg A A	P $\frac{1}{2}M$	 `&	$Mg imes rac{1}{3} a \sin \theta = rac{1}{2} Mg imes a \cos \theta$ $ an \theta = rac{3}{2}$ $ ag{}$ $ ag{}$ $ ag{}$ $ ag{}$ $ ag{}$ cao where of mass of $ ag{}$ $ ag{}$ and $ ag{}$ $ ag{}$ are	(4) M1 A1=A1 M1 A1 (5) [9]

Question Number			Scher	ne			Marks	3
2.					entre of mass of C and			
	G is the centr	e of mass of	C; G' is the	combined cer	tre of mass of C and F	? .		
	First Alternati							
	Mass ratios	$rac{C}{2}$	<i>P</i> 1	C and P 3				
	\overline{y}	$\frac{1}{3}a$	1 0	$\overline{\mathcal{Y}}$				
	\overline{x}	0	а	\overline{x}				
	Finding	g both coordi					M1	
			$\frac{2}{3}a = 3\overline{y} =$	· ·			A1	
	0.		$a = 3\overline{x} =$	$\Rightarrow x = \frac{1}{3}a$			A1	
		. 1						
		$\frac{1}{3}a$		an heta =	$=\frac{\frac{1}{3}a}{\frac{2}{9}a}=\frac{3}{2}$		M1	
	G'	$\left(\frac{2}{9}a\right)$			$\frac{2}{9}a$ 2		1771	
	1 1	ertical	P		<i>θ</i> ≈ 56°	cao	A1	(5)
	Second Alterno							
	0	$\frac{N}{1}$		<i>P</i>				
				GG	$G': G'P = \frac{1}{2}M: M = 1:2$			
		θ			$OG = \frac{1}{3}a$, $OP = a$			
		$\langle G' \rangle$		By sin	nilar triangles		3.61 4.1	
		Vertical			$ON = \frac{1}{3}OP = \frac{1}{3}a$ $NG' = \frac{2}{3}OG = \frac{2}{9}a$		M1 A1 A1	
				taı	$n\theta = \frac{ON}{NG'} = \frac{\frac{1}{3}a}{\frac{2}{9}a} = \frac{3}{2}$		M1	
					<i>θ</i> ≈ 56°	cao	A1	(5)

Scheme	Marks
(a) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
Elastic energy when P is at X: $E = \frac{4mg\left(\frac{2}{3}l\right)^2}{2l} + \frac{4mg\left(\frac{4}{3}l\right)^2}{2l} \left(=\frac{40mgl}{9}\right)$	M1 A1
$\frac{1}{2}mV^{2} + 2 \times \frac{4mgl^{2}}{2l} = \frac{4mg\left(\frac{2}{3}l\right)^{2}}{2l} + \frac{4mg\left(\frac{4}{3}l\right)^{2}}{2l}$ $\frac{1}{2}V^{2} + 4gl = \frac{8}{9}gl + \frac{32}{9}gl$	M1A1=A1ft
$V^2 = \frac{8gl}{9}$ solving for V^2	M1
$V = \left(\frac{8gl}{9}\right)^{\frac{1}{2}}$ or exact equivalents	A1 (7)
(b) The maximum speed occurs when $a = 0$ At M the particle is in equilibrium (the sum of the forces is zero) $\Rightarrow a = 0$	B1 B1 (2)
The alternative method using Newton's Second Law is considered on the next page.	121
	Elastic energy when P is at X : $E = \frac{4mg\left(\frac{2}{3}l\right)^2}{2l} + \frac{4mg\left(\frac{4}{3}l\right)^2}{2l} \left(= \frac{40mgl}{9} \right)$ $\frac{1}{2}mV^2 + 2 \times \frac{4mgl^2}{2l} = \frac{4mg\left(\frac{2}{3}l\right)^2}{2l} + \frac{4mg\left(\frac{4}{3}l\right)^2}{2l}$ $\frac{1}{2}V^2 + 4gl = \frac{8}{9}gl + \frac{32}{9}gl$ $V^2 = \frac{8gl}{9} \qquad \text{solving for } V^2$ $V = \left(\frac{8gl}{9}\right)^{\frac{1}{2}} \qquad \text{or exact equivalents}$ (b) The maximum speed occurs when $a = 0$ At M the particle is in equilibrium (the sum of the forces is zero) $\Rightarrow a = 0$ The alternative method using Newton's Second Law is considered on the next

Question Number	Scheme	Marks	
3.	Alternative using Newton's second law. (a)		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	HL $T_1 = \frac{4mg(l+x)}{l}, T_2 = \frac{4mg(l-x)}{l}$		
	$N2L m\ddot{x} = T_2 - T_1 = -\frac{8mg}{l}x$	M1 A1	
	This is SHM, centre M		
	$a = \frac{l}{3}, \omega^2 = \frac{8g}{l}$	Al, Alft	
	$v^2 = \omega^2 (a^2 - x^2) \implies v^2 = \frac{8g}{l} \left(\frac{l^2}{9} - x^2 \right)$ Depends on showing SHM	M1	
	At M , $x = 0$, $V^2 = \frac{8gl}{9}$, $V = \left(\frac{8gl}{9}\right)^{\frac{1}{2}}$ or exact equivalents	M1, A1	(7)
	(b) The particle is performing SHM about the mid-point of AB. The maximum speed occurs at the centre of the oscillation (when $x = 0$)	B1 B1	(2) [9]

Question Number	Scheme	Marks	
4.	(a) $\sin \theta = \frac{\frac{1}{2}r}{r}$	$=\frac{1}{2} (\Rightarrow \theta = 30^{\circ})$ B1	
	$\uparrow R \sin \theta = R$	= mg $= 2mg$ A1	(4)
	$P \xrightarrow{r \theta} \frac{1}{2}r $ (b) $\rightarrow R \cos$	$\theta = mx\omega^{2}$ $= m(r\cos\theta)\omega^{2}$ M1 A1 A1	
		$\omega = \left(\frac{2g}{r}\right)^{\frac{1}{2}}$ A1	
	$T = \frac{2\pi}{\omega} = 2\pi \left(\frac{r}{2}\right)$	$\left(\frac{1}{g}\right)^{\frac{1}{2}}$ or exact equivalent M1 A1	(6)
	Note: $x = \frac{\sqrt{3}}{2}r$		[10]

Question Number	Scheme	Marks
5.	(a) $\frac{1}{2}mv^{2} = mg\left(a\cos\alpha - a\cos\theta\right)$ $v^{2} = 2ga\left(\cos\alpha - \cos\theta\right) + \cos\theta$ (b) $[mg\cos\theta\left(-R\right) = \frac{mv^{2}}{a} (R=0)$ $g\cos\theta = 2g\left(\frac{3}{4} - \cos\theta\right)$ $\cos\theta = \frac{1}{2} \implies \theta = \frac{\pi}{3} (\text{accept } 60^{\circ})$ (c) From A to B $\frac{1}{2}mw^{2} = mg\left(\underline{a + a\cos\alpha}\right)$ $w^{2} = 2ga\left(1 + \frac{3}{4}\right) \implies w = \left(\frac{7ga}{2}\right)^{\frac{1}{2}}$	M1 A1 A1 A1 (4) M1 A1=A1 M1 A1 (5) M1 A1 A1 A1 (4) [13]
	Alternative solutions to 5(c) are considered on the next page.	

Question Number	Scheme	Marks
5.	Alternatives to 5(c)	
	From P to C	
	$v_p^2 = 2ga\left(\frac{3}{4} - \frac{1}{2}\right) = \frac{ga}{2}$	
	$\frac{1}{2}mw^2 - \frac{1}{2}m\left(\frac{ga}{2}\right) = mg\left(\underline{a + a\cos\theta}\right)$	M1 A1 <u>A1</u>
	$w^2 - \frac{ga}{2} = 2mga\left(1 + \frac{1}{2}\right) \implies w = \left(\frac{7ga}{2}\right)^{\frac{1}{2}}$	A1 (4)
	Alternatives using projectile motion from P	
	$v_P = \left(\frac{ga}{2}\right)^{\frac{1}{2}}$, as above	
	$\downarrow \qquad u_y = \left(\frac{ga}{2}\right)^{\frac{1}{2}} \sin 60^\circ = \left(\frac{3ga}{8}\right)^{\frac{1}{2}}$	
	$\psi v_y^2 = u_y^2 + 2g \times \frac{3a}{2}, = \frac{27ga}{8}$	M1, A1
	$\rightarrow u_x = \left(\frac{ga}{2}\right)^{\frac{1}{2}}\cos 60^{\circ} = \left(\frac{ga}{8}\right)^{\frac{1}{2}}$	A1
	$w^{2} = u_{x}^{2} + v_{y}^{2} = \frac{ga}{8} + \frac{27ga}{8} = \frac{7ga}{2} \implies w = \left(\frac{7ga}{2}\right)^{\frac{1}{2}}$	A1 (4)
	There are also longer projectile methods using time of flight	TO 1.00 TO 1.0
	In outline, solving $\frac{3a}{2} = \left(\frac{3ga}{8}\right)^{\frac{1}{2}} t + \frac{1}{2}gt^2$ gives $t = \left(\frac{3a}{2g}\right)^{\frac{1}{2}}$,	
	then, using $v = u + at$ gives $v_y = \left(\frac{3ga}{8}\right)^{\frac{1}{2}} + g\left(\frac{3a}{2g}\right)^{\frac{1}{2}} = \left(\frac{27ga}{8}\right)^{\frac{1}{2}}$, then as before.	M1 A1

Question Number	Scheme	Marks	
6.	(a) $a = 3$, $T = 12$ (or $\frac{1}{2}T = 6$)	B1, B1	
	$T = \frac{2\pi}{\omega} = 12 \Rightarrow \omega = \frac{\pi}{6} (\Box \ 0.52)$	M1 A1	
	In the scheme below, when a and/or ω appear in a line, accept the symbols or the candidates' values of a and/or ω for the marks in that line.		
	(Taking $x = a$ when $t = 0$) $x = a \cos \omega t$ $\dot{x} = -a\omega \sin \omega t$	M1 M1 A1	
	When $t = 5$ $\dot{x} = -3 \times \frac{\pi}{6} \sin \frac{5\pi}{6}$	M1	
	$ \dot{x} = \frac{\pi}{4} \pmod{m h^{-1}} $ awrt 0.79	A1	(9)
	(b) Depth of 5.5 m $\Rightarrow x = -1.5$ $-1.5 = a \cos \omega t$	M1	
	$\cos \omega t = -\frac{1}{2}$	A1ft	
	$\frac{\pi}{6}t = \frac{2\pi}{3}, \left(\frac{4\pi}{3}\right)$	M1	
	t = 4, 8	A1	.
	Required time is $t_2 - t_1 = 8 - 4 = 4$ (h)	((5) 14]
	In 6(b), the following should be accepted		•
	$1.5 = a \cos \omega t$	M1	
	$\cos \omega t = \frac{1}{2}$	A1ft	
	$\frac{\pi}{6}t = \frac{\pi}{3}$	M1	
	t=2	A1	
	Required time is $2t = 4$ (h)	A1 ((5)
	Further alternatives are given over the page.		

Question Number	Scheme	Marks
6.	Alternative to 6(a) The last 5 marks of 6(a) can be gained as follows. The first 4 marks are as above.	
	When $t = 5$ $ x = 3\cos\frac{5\pi}{6} = -\frac{3\sqrt{3}}{2} (\Box -2.60) $ $ v^2 = \omega^2 \left(a^2 - x^2\right) $ $ = \frac{\pi^2}{6^2} \left(9 - \frac{9 \times 3}{4}\right) \left(=\frac{\pi^2}{16}\right) $ $ v = \frac{\pi}{4} (m h^{-1}) $ awrt 0.79	M1 M1 M1 A1 A1
	Alternatives measuring x from the centre of oscillation (a) (Using 1400 as $t = 0$) The first 4 marks are as above $ \begin{aligned} x &= a \sin \omega t \\ \dot{x} &= a \omega \cos \omega t \\ \dot{x} &= 3 \times \frac{\pi}{6} \cos \frac{2\pi}{6} \qquad t = 2 \text{ oe is essential for this M} \end{aligned} $ When $t = 2$ $ = \frac{\pi}{4} (\text{m h}^{-1})$	B1 B1 M1 A1 M1 A1 M1 A1 A1 (9)
	(b) $1.5 = 3 \sin \omega t$ $\sin \omega t = \frac{1}{2}$ $\frac{\pi}{6} t = \frac{\pi}{6}, \left(\frac{5\pi}{6}\right)$ $t = 1, 5$ Required time is $t_2 - t_1 = 5 - 1 = 4 \text{(h)}$	M1 A1ft M1 A1 A1 A1 (5) [14]

Question Number	Scheme	Marks
7.	$\frac{1}{3}\ddot{x} = -\frac{k}{\left(x+1\right)^2}$	M1
	$\frac{1}{3}v\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{k}{\left(x+1\right)^2}$	M1
	$\int v dv = \int -\frac{3k}{(x+1)^2} dx$ Separating variables &	
	$\frac{1}{2}v^2 = \frac{3k}{x+1} (+C) \text{attempting integration of both sides}$	M1 A1=A1
	$v^2 = \frac{6k}{x+1} + A$	
	Using boundary values to obtain two simultaneous equations. (1, 4) $16 = 3k + A$	M1 A1
	$\left(8,\sqrt{2}\right) \qquad 2 = \frac{2k}{3} + A$	A1
	$14 = \frac{7}{3}k \Rightarrow k = 6$	M1 A1 (10)
	A = -2	B1
	$v^{2} = \frac{36}{x+1} - 2 = 0$ $x = 17 \text{ (m)}$	M1 M1 A1 (4) [14]