MECHANICS (C) UNIT 3

2.

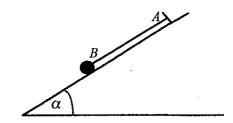
TEST PAPER 10

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

- A particle performs simple harmonic motion along a straight line AB, about a fixed point O. The frequency of the motion is 50 oscillations per second and the amplitude of the motion
- is 3×10^{-2} m. Calculate the speed of the particle when it passes through O. [4]
- modulus of elasticity λ . N. The end A is attached to a fixed point on a smooth plane inclined at an angle α to the horizontal, as shown, and the particle rests in equilibrium with the length $AB = \frac{5l}{4}$ m.

A particle of mass m kg is attached to the end B of a light

elastic string AB. The string has natural length I m and

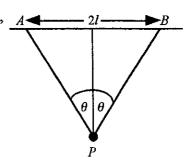


(i) Show that $\lambda = 4 mg \sin \alpha$.

[2]

The particle is now moved and held at rest at A with the string slack. It is then gently released so that it moves down the plane along a line of greatest slope.

- (ii) Find the greatest distance from A that the particle reaches down the plane. [5]
- A particle P, of mass m kg, is attached to two light elastic strings, each of natural length I m and modulus of elasticity 3mg N. The other ends of the strings are attached to the fixed points A and B, where AB is horizontal and AB = 2l m. If P rests in equilibrium vertically below the mid-point of AB, with each string making an angle θ with the vertical, show that



$$\cot \theta - \cos \theta = \frac{1}{6}.$$

[8]

- Suraiya, whose mass is m kg, takes a running jump into a swimming pool so that she begins to swim in a straight line with speed 0.2 ms⁻¹. She continues to move in the same straight line, the only force acting on her being a resistance of magnitude $mv^2 \sin\left(\frac{t}{100}\right)$ N, where v ms⁻¹ is her speed at time t seconds after entering the pool and $0 \le t \le 50\pi$.
 - (i) Find an expression for v in terms of t.

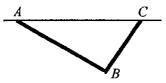
[7]

(ii) Calculate her greatest and least speeds during her motion.

[3]

MECHANICS 3 (C) TEST PAPER 10 Page 2

5. Two uniform rods AB and BC, of lengths 4a and 3a and weights 4mg and 3mg respectively, are smoothly jointed at B. The ends A and C are free to move on a smooth horizontal wire.



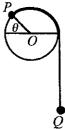
(i) Show that, for equilibrium to be possible, the rod BC must be vertical.

[5]

(ii) Find the magnitudes of the reactions on the rods at A and C.

[5]

6. The diagram shows two identical particles, each of mass m kg, connected by a thin, light inextensible string. P slides on the surface of a smooth right circular cylinder fixed with its axis, through O, horizontal. Q moves vertically. OP makes an angle θ radians with the horizontal.

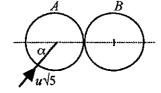


The system is released from rest in the position where $\theta = 0$.

(i) Show that the vertical distance moved by Q is $\frac{\theta}{\sin \theta}$ times the vertical distance moved by P.

[3]

- (ii) In the position where $\theta = \frac{\pi}{6}$, prove that the reaction of the cylinder on P has magnitude $\left(1 \frac{\pi}{6}\right)mg$ N. [7]
- 7. The diagram shows a smooth sphere A moving with speed $u\sqrt{5}$ striking an identical sphere B which is at rest. At the moment of impact the direction of motion of A makes an angle α with the line of centres of the spheres, where $\tan \alpha = \frac{1}{2}$. The coefficient of restitution between the spheres is e.



- (i) Show that after the impact, B starts to move along the line of centres. [1]
- (ii) Show that the component of A's speed along the line of centres immediately after the impact is (1 e)u. [5]
- (iii) Given further that A and B have equal kinetic energies after the impact, prove that $e = \frac{1}{4}$.

[5]

MECHANICS 3 (C) TEST PAPER 10: ANSWERS AND MARK SCHEME

1.
$$\frac{2\pi}{\omega} = \frac{1}{50}$$
 $\omega = 100\pi$ $v = a\omega = 3 \times 10^{-2} \times 100\pi = 9.42 \text{ ms}^{-1}$ M1 A1 M1 A1

2. (i)
$$T = mg \sin \alpha$$
 $\frac{\lambda}{l} \cdot \frac{l}{4} = mg \sin \alpha$ $\lambda = 4mg \sin \alpha$ M1 A1
(ii) E.P.E. gained = grav. P.E. lost: $\frac{4mg \sin \alpha}{2l} (d-l)^2 = mg d \sin \alpha$ M1 A1

(ii) E.P.E. gained = grav. P.E. lost:
$$\frac{4mg \sin \alpha}{2l} (d-l)^2 = mg \ d \sin \alpha$$
 M1 A1
 $2d^2 - 5ld + 2l^2 = 0$ $(2d-l)(d-2l) = 0$ $d = 2l \text{ m}$ A1 M1 A1

3. Symmetric, so tensions in strings are equal
$$2T\cos\theta = mg$$
 B1 M1 A1

 $AP\sin\theta = l$, so $AP = \frac{l}{\sin\theta}$ $T = \frac{3mg}{l}(\frac{l}{\sin\theta} - l)$ M1 A1

Hence $2 \times 3mg(\frac{1}{\sin\theta} - 1)\cos\theta = mg$ 6(cot $\theta - \cos\theta$) = 1, etc M1 A1 A1

4. (i)
$$\frac{dv}{dt} = -v^2 \sin\left(\frac{t}{100}\right)$$
 $\int \frac{1}{v^2} dv = -\int \sin\left(\frac{t}{100}\right) dt$ M1 A1
 $-\frac{1}{v} = 100 \cos\left(\frac{t}{100}\right) + c$ $t = 0, v = 0.2 : c = -105$ A1 M1 A1
 $\frac{1}{v} = 105 - 100 \cos\left(\frac{t}{100}\right)$ $v = \frac{1}{105 - 100\cos\left(\frac{t}{100}\right)}$ M1 A1

(ii)
$$v_{\text{max}} = 0.2 \text{ ms}^{-1} \text{ (initial speed)}$$
 $v_{\text{min}} = 0.00952 \text{ ms}^{-1} \text{ (t = 50}\pi\text{)}$ M1 A1 A1

6. (i)
$$P$$
 moves up $r \sin \theta$ while Q moves down by arc length $r\theta$ M1 A1

Ratio of vertical distances moved = $\frac{r\theta}{r \sin \theta} = \frac{\theta}{\sin \theta}$ A1

(ii) $mg \sin \theta - R = \frac{mv^2}{r}$ Energy: $mgr\theta - mgr \sin \theta = \frac{1}{2} mv^2 + \frac{1}{2} mv^2$ M1 A1 M1 A1

 $R = mg(2 \sin \theta - \theta) = mg(1 - \frac{\pi}{6})$ when $\theta = \frac{\pi}{6}$ M1 A1 A1

7. (i) Let components after impact be
$$p$$
, q for A and v , w for B

Mom. of B alone: $0 = mw$ $w = 0$, so moves along 1. of c. B1

(ii) For system, $v + p = u\sqrt{5}$. $\frac{2}{\sqrt{5}}$ $v + p = 2u$ M1 A1

Restitution: $v - p = -e(0 - 2u)$ Solve: $p = (1 - e)u$ M1 A1 A1

(iii) $v = (1 + e)u$ K.E.s: $\frac{1}{2}m(1 + e)^2u^2 = \frac{1}{2}m[(1 - e)^2u^2 + u^2]$ A1 M1 A1

 $4e = 1$ $e = \frac{1}{4}$ M1 A1