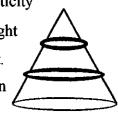
MECHANICS (C) UNIT 3

TEST PAPER 7

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. A heavy elastic ring of radius r m, natural length $2\pi r$ m and modulus of elasticity λ N has mass m kg. It is placed, with its plane horizontal, over a smooth right circular cone fixed with its axis vertical, as shown. The ring is then just taut. It is released and falls a vertical distance r m, so that in its stretched position it has radius 2r m, before coming to instantaneous rest. Show that $\lambda = \frac{mg}{r}$.



[4]

2. A racing car of mass 1000 kg, travelling on a horizontal track at 50 ms⁻¹, strikes a vertical crash barrier. It rebounds at 30 ms⁻¹ at an angle of 120° to its original direction of motion.

Calculate the magnitude of the impulse given by the barrier to the car.

[4]

Find the angle this impulse makes with the final direction of the car's motion.

[2]

- 3. Two uniform rods AB and BC, each of length 2a and weight mg, are smoothly jointed at B. They rest in equilibrium in a vertical plane with the ends A and C on a smooth horizontal surface. The mid-points of the rods are joined by an elastic string which has modulus of elasticity λ . Each rod then makes an angle θ with the **vertical**, where $\tan \theta = \frac{3}{4}$.
 - (i) State, with a reason, the magnitude of the reaction on AB at A.

[2]

(ii) Find, in terms of m and g, the tension in the string.

[4]

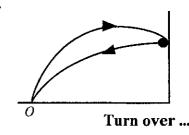
- (iii) Given that the natural length of the string is $\frac{3a}{4}$, show that $\lambda = \frac{5mg}{4}$. [2]
- 4. A particle P moves in a straight line with simple harmonic motion about the point O on the line. The period of the motion is 2π seconds. When P is at the point A, at a distance of 1 m from O, its speed is 2 ms^{-1} .
 - (i) Calculate the amplitude of the motion.

[4]

[4]

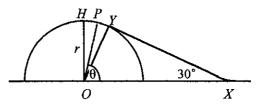
At a certain instant P is passing through A and moving away from O. t_0 seconds later P is again at A, but moving towards O.

- (ii) Show that $t_0 = \pi 2 \sin^{-1} \frac{1}{\sqrt{5}}$.
- 5. A ball is projected with speed 20 ms⁻¹ at an angle of elevation 15° above the horizontal. It hits a smooth vertical wall at a distance 10 m away horizontally, rebounds and returns to the point of projection O. The coefficient of restitution between the ball and the wall is e.



MECHANICS 3 (C) TEST PAPER 7 Page 2

- 5. continued ...
 - (i) State, with explanation, the values of the horizontal and vertical components of the ball's velocity when it returns to O. [4]
 - (ii) By considering the horizontal and vertical motion of the ball separately, find two different expressions for the total time of flight. [6]
 - (iii) Hence find the value of e, to 2 decimal places. [1]
- 6. The diagram shows the vertical cross-section of a smooth skating track. The ramp XY is inclined at 30° to the horizontal and is tangential at Y to the curved section YH of the track, which is a circular arc with



centre O and radius r m in a fixed vertical plane. H is the highest point on the track.

Nevin, whose mass is m kg, skates to the ramp and passes through X with speed u ms⁻¹, after which she slides up the track without accelerating.

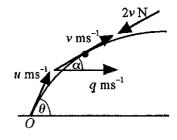
(i) If she reaches H, find the minimum value of u in terms of g and r. [2]

Given that Nevin passes through the point P, where angle $XOP = \theta$, with speed $v \text{ ms}^{-1}$,

(ii) show that the force R N exerted by the track on Nevin at P is given by

$$R = mg \sin \theta - \frac{mv^2}{r}.$$
 [2]

- (iii) Use energy to express v^2 in terms of u, g, r and θ . [3]
- (iv) Find the minimum magnitude of R on the arc YH, in terms of m, u, g and r. [4]
- 7. A particle of mass 1 kg is projected with speed u ms⁻¹ at an angle θ to the horizontal. At time t s after projection its speed is v ms⁻¹ at an angle α to the horizontal, and the horizontal component of its speed is q ms⁻¹. The non-gravitational resistance at this time has magnitude 2v N and acts directly opposite to the instantaneous direction of motion of the particle.



[1]

- (i) Write down an expression for q in terms of v and α .
- (ii) Show that $q = u \cos \theta e^{-2t}$. [7]

Given that $\theta = \frac{\pi}{3}$,

(iii) calculate the value of t when q has half the value that it would have if there were no resistance to the particle's motion. [4]

8

MECHANICS 3 (C) TEST PAPER 7: ANSWERS AND MARK SCHEME

1. Loss in grav. P.E. = gain in E.P.E. :
$$mgr = \frac{\lambda}{4\pi r} [(4\pi r - 2\pi r)^2]$$
 M1 A1 A1
$$\lambda = \frac{2\pi mgr^2}{2\pi^2 r^2} = \frac{mg}{\pi}$$
 A1

2. From vector triangle, with interior angle 120°, new velocity
$$v$$
 is M1 given by $v^2 = 30^2 + 50^2 - (2 \times 30 \times 50 \times \cos 120^\circ) = 4900$ $v = 70$ M1 A1 $J = 7 \times 10^4$ Ns $\frac{\sin 120}{70} = \frac{\sin \alpha}{50}$ $\alpha = 38.2^\circ$ A1 M1 A1

3. (i) Split rods at
$$B$$
: no vertical contact force at B , so by symmetry, M1 reactions are each equal to mg A1

(ii) M(B) for AB : $mg.2a.\frac{3}{5} = mg.\frac{3a}{5} + T.\frac{4a}{5}$ $T = \frac{3mg}{4}$ M1 A1 A1 A1

(iii) $\frac{3mg}{4} = \frac{4\lambda}{3a} \left(2a.\frac{3}{5} - \frac{3a}{4}\right)$ $\lambda = \frac{9}{16}.\frac{20}{9}mg = \frac{5mg}{4}$ M1 A1

4. (i)
$$v^2 = n^2(a^2 - x^2)$$
 $T = 2\pi$, so $n = 1$ $4 = a^2 - 1$ $a = \sqrt{5}$ M1 A1 M1 A1
(ii) $x = \sqrt{5} \sin t$ $1 = \sqrt{5} \sin t_1$ $t_1 = \sin^{-1} \frac{1}{\sqrt{5}}$ M1 A1
Required time $t_0 = \frac{T}{4} + \frac{T}{4} - 2t_1 = \pi - 2 \sin^{-1} \frac{1}{\sqrt{5}}$ M1 A1

5. (i) 'Line of centres' perp. to wall, so
$$v_x = e(20 \cos 15^\circ)$$
 B1 B1

Momentum conserved vertically, so $v_y = 20 \sin 15^\circ$ B1 B1

(ii) Horiz. : $T = \frac{10}{20\cos 15} + \frac{10}{20\cos 15} = 0 \cdot 52 + \frac{0.52}{e} = 0 \cdot 52 \left(1 + \frac{1}{e}\right)$ M1 A1 A1

Vert. (as if complete parabola) : $0 = 20 \sin 15^\circ t - 4.9 t^2$ M1 A1

 $t = 1.056$ (iii) Hence $e = 0.96$ A1 A1

6. (i) Energy:
$$u$$
 is min, if just reaches H , so $\frac{mu^2}{2} = mgr$ $u = \sqrt{(2gr)}$ M1 A1
(ii) $\frac{mv^2}{r} = mg \sin \theta - R$ $R = mg \sin \theta - \frac{mv^2}{r}$ M1 A1
(iii) $\frac{mu^2}{2} = \frac{mv^2}{2} + mgr \sin \theta$ $v^2 = u^2 - 2gr \sin \theta$ M1 M1 A1
(iv) R is min at Y : $\theta = 60^\circ$ $R = 3mg \sin \theta - \frac{mu^2}{r} = \frac{3mg\sqrt{3}}{2} - \frac{mu^2}{r}$ B1 M1 A1 A1

7. (i)
$$q = v \cos \alpha$$
 B1
(ii) Equation of motion horizontally: $\frac{dq}{dt} = -2v \cos \alpha$ M1 A1
Using (i), $\frac{dq}{dt} = -2q$ B1

$$\int \frac{1}{q} dq = -2 \int dt \qquad \ln q = -2t + c \qquad \text{M1 A1}$$

$$x = 0, q = u \cos \theta, \text{ so } c = \ln (u \cos \theta) \qquad \ln \frac{q}{u \cos \theta} = -2t \qquad \text{B1 M1}$$
Hence $q = u \cos \theta e^{-2t}$ A1

(iii) With no resistance,
$$q$$
 is constant at $u \cos \theta$, $= \frac{1}{2} u$ when $t = \frac{\pi}{3}$ B1
$$\frac{u}{4} = \frac{u}{2} e^{-2t} \qquad -2t = \ln \frac{1}{2} \qquad t = \frac{1}{2} \ln 2 \qquad \text{M1 A1}$$