MECHANICS (C) UNIT 3

TEST PAPER 4

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. When a simple pendulum of length l m swings through a very small amplitude, its period is t s. When it swings through a larger amplitude θ radians, the period T s is given by a better approximation

$$T \approx 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{4} \sin^2 \frac{\theta}{2} \right).$$

(i) Show that in this case, assuming θ is small, $T \approx 2\pi \sqrt{\frac{I}{g}} \left(1 + \frac{\theta^2}{16}\right)$.

[2]

(ii) Hence show that if $\frac{T-t}{t} < 0.1$, the maximum value of θ is 0.4.

[2]

- A spacecraft of mass 500 kg is cruising with a speed of 3 km s⁻¹. The ground control station gives it an impulse of magnitude 10⁵ Ns to cause a change of 2° in the direction of its motion.
 Assuming that the spacecraft's motion remains in the same plane, calculate the speed with which it moves along its new path.
 [7]
- 3. A thin elastic string, of modulus λ N and natural length 20 cm, passes round two small, smooth pegs A and B on the same horizontal level to form a closed loop. AB = 10 cm. The ends of the string are attached to a weight P of mass 0.7 kg. When P rests in equilibrium, APB forms an equilateral triangle.

(i) Find the value of λ .

[6]

- (ii) State one assumption that you have made about the weight *P*, explaining how you have used this assumption in your solution. [1]
- 4. Two uniform rods AB and BC, each of length 2a and weight mg, are smoothly jointed at A. Their mid-points are joined by a light inelastic string and the system rests in equilibrium with B and C on a smooth horizontal floor and each rod inclined at 30° to the floor.

(i) Show that the reaction forces at B and C are equal in magnitude, and find their magnitudes.

[2]

(ii) Find the tension in the string.

[3]

(iii) Show that the force acting on AB at A has magnitude $mg\sqrt{3}$, and state its direction.

[2]

If, instead, the floor is rough and the rods rest in equilibrium in the same position,

[2]

(iv) state, with a reason, whether the magnitude of the tension in the string will be larger, smaller or the same as before.

MECHANICS 3 (C) TEST PAPER 4 Page 2

5. Two identical small smooth marbles A and B, each of mass m kg, collide with each other. The table gives the components of their velocity (in ms^{-1}) before and after impact, relative to perpendicular x and y axes.

	Before impact		After impact	
	x component	y component	x component	y component
A	5	8	и	ν
В	8	4	p	-q

At the moment of impact, the line joining the centres of the marbles lies along the y-axis.

The coefficient of restitution between A and B is $\frac{2}{3}$.

- (i) Show that (a) q + v = 8, (b) q v = 4. [4]
- (ii) Find, in terms of m, the loss in the total kinetic energy of A and B due to the impact. [6]
- 6. A small bead P, of mass m kg, can slide on a smooth circular ring, with centre O and radius r m, which is fixed in a vertical plane.
 P is projected from the lowest point L of the ring with speed
 √(3gr) ms⁻¹. When P has reached a position such that OP makes an angle θ with the downward vertical, as shown, its speed is v ms⁻¹.

- (i) Show that $v^2 = gr(1 + 2\cos\theta)$. [5]
- (ii) Show that the magnitude of the reaction R N of the ring on the bead is given by

$$R = mg(1 + 3\cos\theta).$$
 [4]

- (iii) Find the values of $\cos \theta$ when
 - (a) P is instantaneously at rest, (b) the reaction R is instantaneously zero. [2]
- 7. A particle of mass m kg moves horizontally in a medium which offers a resistance of magnitude $\frac{mv^2}{k+x}$ N, where x m is the distance travelled into the medium and v ms⁻¹ is the speed at time t s after it enters the medium. k is a positive constant.

Given that the speed of the particle is $u \text{ ms}^{-1}$ when t = 0,

(i) show that
$$v = \frac{ku}{k+x}$$
. [6]

Given further that x = 2 when t = 2,

(ii) find k in terms of u and write down a necessary condition on u for the motion to be possible.[6]

7

MECHANICS 3 (C) TEST PAPER 4: ANSWERS AND MARK SCHEME

1. (i) As
$$\theta$$
 is small, $\sin \theta \approx \theta$, so $\frac{1}{4}\sin^2\frac{\theta}{2} \approx \frac{1}{4}\left(\frac{\theta}{2}\right)^2 = \frac{\theta^2}{16}$ M1 A1
(ii) $t = 2\pi\sqrt{\frac{l}{g}}$ so $\frac{T-t}{t} = \frac{\theta^2}{16} < 0.1$ $\theta < 0.4$ M1 A1

2. Sine rule in momentum
$$\Delta$$
: $\frac{10^5}{\sin 2^0} = \frac{500 \times 3 \times 10^3}{\sin \theta}$ $\theta = 31.6^{\circ}$ M1 A1 M1 A1 A1

Then $\frac{10^5}{\sin 2} = \frac{500 v}{\sin(180-336)}$ $v = 3.2 \times 10^3 \text{ ms}^{-1} = 3.2 \text{ km s}^{-1}$ M1 A1

3. (i)
$$T = \frac{\lambda(0.1)}{0.2} = \frac{\lambda}{2}$$
 Resolve vertically : $2T \cos 30^\circ = 0.7g$ M1 A1 M1 A1

 $T = 3.96$ $\lambda = 2T = 7.92$ M1 A1

(ii) Assumed P is a particle, e.g. a single point at vertex of Δ B1

4. (i) Reactions equal by symmetry;
$$2R = mg + mg$$
 $R = mg$ B1 B1
(ii) M(A) for AB: $mg(2a \cos 30^\circ) = mg(a \cos 30^\circ) + T(a \sin 30^\circ)$ M1 A1
 $mg\sqrt{3} = mg\frac{\sqrt{3}}{2} + \frac{T}{2}$ $T = mg\sqrt{3}$ A1

(iii) For AB alone, vertical force = 0, horiz. force =
$$T = mg\sqrt{3}$$
 M1 A1

5. (i) Restitution:
$$-e(12) = -q - v$$
 $q + v = 8$ M1 A1
Momentum for system: $-8 + 4 = v - q$ $q - v = 4$ M1 A1
(ii) Solve eqns: $q = 6$, $v = 2$ Also, must have $p = 8$, $u = 5$ M1 A1 B1 B1
K.E. lost $= \frac{1}{2} m[5^2 + 8^2 + 8^2 + 4^2 - (5^2 + 8^2 + 6^2 + 2^2)] = 20m$ J M1 A1

6. (i) P.E. gained = K.E. lost:
$$mgr(1 - \cos \theta) = \frac{1}{2}m(3gr) - \frac{1}{2}mv^2$$
 M1 M1 A1
 $v^2 = 3gr - 2gr + 2gr \cos \theta = gr(1 + 2\cos \theta)$ M1 A1
(ii) $R - mg \cos \theta = \frac{mv^2}{r}$ M1 A1
 $R = \frac{m}{r}gr(1 + 2\cos \theta) + mg \cos \theta$ $R = mg(1 + 3\cos \theta)$ M1 A1
(iii) (a) When $v = 0$, $\cos \theta = -\frac{1}{2}$ (b) When $R = 0$, $\cos \theta = -\frac{1}{3}$ B1 B1

7. (i)
$$mv \frac{dv}{dx} = -\frac{mv^2}{k+x}$$
 $\int \frac{dv}{v} = -\int \frac{dx}{k+x}$ $\ln v = c - \ln(k+x)$ M1 A1 A1 $v = u, x = 0$: $c = \ln u + \ln k = \ln ku$ $\ln v = \ln ku - \ln(k+x)$ M1 A1 $v = \frac{ku}{k+x}$ A1 (ii) $v = \frac{dx}{dt} = \frac{ku}{k+x}$ $\int (k+x) dx = \int ku dt$ $kx + \frac{x^2}{2} = kut + c$ M1 A1 $x = 0, t = 0$: $c = 0$ $x = 2, t = 2$: $2k + 2 = 2ku$ A1 M1 $k = \frac{1}{u+1}$ $k > 0$, so $u > 1$ A1 A1 12