MECHANICS (C) UNIT 3

TEST PAPER 2

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. The diagram shows a smooth billiard ball, of mass 0.6 kg,
approaching and rebounding from the side of a horizontal
table. Both before and after the impact, it has speed 0.5 ms⁻¹

and its direction of motion makes an angle of 30° with the side of the table.

Find the magnitude and direction of the impulse on the ball due to the impact with the table.

[4]

A particle P of mass m kg is attached to one end of a light elastic string of natural length l m and modulus of elasticity λ N. The other end of the string is attached to a fixed point O.
 P hangs in equilibrium at the point E where OE = 5l/4 m.

(i) Show that
$$\lambda = 4mg$$
. [2]

P is pulled down vertically to A, where OA = 2l m, and released.

- (ii) Find, in terms of l and g, the speed with which P passes through E. [4]
- 3. A particle moves along a straight line in such a way that its displacement x m from a fixed point O on the line, at time t seconds after it leaves O, is given by $x = p \sin \omega t + q \cos \omega t$ where p, q and ω are constants.
 - (i) Show that the motion of the particle is simple harmonic. [5]
 - (ii) If the particle leaves O with speed 15 ms⁻¹, and $\omega = 3$, find the amplitude of the motion. [2]
- 4. Two identical smooth spheres A and B, each of mass m kg, are moving in opposite directions along parallel lines with equal speeds u ms⁻¹. They collide obliquely, and at the moment of impact their directions of motion make an angle of 30° with the line joining their centres, as shown.

(i) State, in terms of m and u, the total kinetic energy of the two spheres before the impact. [1]

Given that the coefficient of restitution between A and B is e,

- (ii) show that, after impact, the components of B's speed along and perpendicular to the line of centres are $\frac{eu\sqrt{3}}{2}$ ms⁻¹ and $\frac{u}{2}$ ms⁻¹ respectively. [6]
- (iii) Hence calculate, in terms of e, u and m, the loss in kinetic energy due to the impact. [3]

MECHANICS 3.(C) TEST PAPER 2 Page 2

- A particle P is attached to one end of a light inextensible string of length l m. The other end of the string is attached to a fixed point O. When P is hanging at rest vertically below O, it is given a horizontal speed $u \text{ ms}^{-1}$ and starts to move in a vertical circle. Given that the string becomes slack when it makes an angle of 120° with the downward vertical through O, show that $u^2 = \frac{7gl}{2}$.
- Two uniform rods AB and AC, each of length a and weight mg, are smoothly jointed at A. B is freely hinged to the centre of a hollow sphere and C rests against the rough interior surface of the sphere with angle $BAC = 90^{\circ}$, angle $ACB = 45^{\circ}$ and AB inclined at an angle θ to the vertical. A, B and C are in a vertical plane.

[10]

In this position, C is on the point of slipping down the surface.

- (i) By taking moments about B for the system consisting of the two rods, or otherwise, show that the magnitude of the frictional force at C is $\frac{mg}{2\sqrt{2}}(\cos\theta - 3\sin\theta)$. [5]
- (ii) Find, in a similar form, the magnitude of the normal reaction at C. [4] Given that the coefficient of friction between C and the surface of the sphere is $\frac{1}{3}$,

(iii) show that
$$\theta = 9.5^{\circ}$$
. [2]

- A particle of mass m kg is projected vertically upwards with speed u ms⁻¹ In addition to its weight, the only other force acting on it is a resistance of magnitude $mgkv^2$ N opposing its motion, where k is a positive constant and ν ms⁻¹ is the speed of the particle. Show that
 - (i) the greatest height reached by the particle above the point of projection is

$$\frac{1}{2kg}\ln(1+ku^2)\,\mathrm{m},$$
 [6]

(ii) the particle returns to its point of projection with speed
$$\frac{u}{\sqrt{(1+ku^2)}}$$
 ms⁻¹. [6]

MECHANICS 3 (C) TEST PAPER 2: ANSWERS AND MARK SCHEME

1.
$$\mathbf{J} = m\mathbf{v} - m\mathbf{u}$$
 Recognising equilateral Δ , or by calculation B1 M1
 $|\mathbf{J}| = 0.6 \times 0.5 = 0.3$ Ns, perpendicular to side of table A1 A1

2. (i) At E, in equilibrium,
$$mg = \frac{\lambda}{l} \cdot \frac{l}{4}$$
 $\lambda = 4mg$ M1 A1

$$\frac{4mg}{2l}\left(l^2 - \frac{l^2}{16}\right) = mg\frac{3l}{4} + \frac{1}{2}mv^2 \qquad \frac{15gl}{8} - \frac{3gl}{4} = \frac{1}{2}v^2 \qquad v = \frac{3}{2}\sqrt{gl} \qquad \text{M1 A1 A1 A1}$$

3. (i)
$$x = p \sin \omega t + q \cos \omega t$$
 $x = p\omega \cos \omega t - q\omega \sin \omega t$ M1 A1
$$x = -p\omega^2 \sin \omega t - q\omega^2 \cos \omega t = -\omega^2 (p \sin \omega t + q \cos \omega t) = -\omega^2 x$$
 M1 A1 Acc. prop. to displacement and directed towards O , so SHM B1

(ii) Maximum speed at O, so
$$15 = a\omega = 3a$$
 $a = 5$ m M1 A1 7

4. (i) Total K.E. =
$$\frac{1}{2} mu^2 + \frac{1}{2} mu^2 = mu^2$$
 J

(ii) // line of centres :
$$mv_A + mv_B = 0$$
, $(v_A - v_B)/(2u \cos 30^\circ) = -e$ M1 A1
Hence $v_B = ue \cos 30^\circ = \frac{eu\sqrt{3}}{2}$ M1 A1

$$\perp$$
 line of centres, speed unchanged; component = $u \sin 30^\circ = \frac{u}{2}$ M1 A1

(iii) New K.E. of either sphere =
$$\frac{1}{2}m\left(\frac{3e^2u^2}{4} + \frac{u^2}{4}\right)$$
 B1
K.E. lost = $mu^2 - m\left(\frac{3e^2u^2}{4} + \frac{u^2}{4}\right) = \frac{3mu^2}{4}\left(1 - e^2\right)$ J M1 A1

5. K.E. lost = P.E. gained:
$$\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mgl - mgl\cos\theta$$
 M1 A1
 $v^2 = u^2 - 2gl + 2gl\cos\theta$ A1
 $T - mg\cos\theta = \frac{mv^2}{l}$ $T = \frac{m}{l}(u^2 - 2gl + 2gl\cos\theta) + mg\cos\theta$ M1 A1 M1 A1

$$T = 0$$
 when $\theta = 120^\circ$: $\frac{u^2}{l} - 2g - g - \frac{g}{2} = 0$ $u^2 = \frac{7gl}{2}$ M1 A1 A1

6. (i)
$$M(B)$$
: $mg\frac{\alpha}{2}\sin\theta + Fa\sqrt{2} = mg\left(\frac{\alpha}{2}\cos\theta - \alpha\sin\theta\right)$ M1 A1
 $mg\sin\theta + 2F\sqrt{2} = mg\cos\theta - 2mg\sin\theta$ $F = \frac{mg}{2\sqrt{2}}(\cos\theta - 3\sin\theta)$ M1 A1 A1

(ii) M(A) for AC:
$$R = \frac{a}{\sqrt{2}} = mg \frac{a}{2} \cos \theta - F \frac{a}{\sqrt{2}}$$
 M1 A1

$$R = \frac{2}{2\sqrt{2}} \cos \theta - F = \frac{mg}{2\sqrt{2}} (\cos \theta + 3 \sin \theta)$$
 M1 A1

(iii)
$$F = \mu R : \cos \theta + 3 \sin \theta = 3(\cos \theta - 3 \sin \theta)$$
 6 tan $\theta = 1$ $\theta = 9.5^{\circ}$ M1 A1

7. (i) Rising,
$$mv \frac{dv}{dx} = -mg - mgkv^2$$

$$\int \frac{v}{1+kv^2} dv = -\int g dx$$
 M1 A1
$$\frac{1}{2k} \ln(1+kv^2) = -gx + c \quad x = 0, v = u, \text{ so } c = \frac{1}{2k} \ln(1+ku^2)$$
 M1 A1 When $v = 0$, $gx = c$
$$x = \frac{1}{2kg} \ln(1+ku^2)$$
 M1 A1

(ii) Falling,
$$mv \frac{dv}{dx} = -mg + mgkv^2$$
 $-\frac{1}{2k} \ln (1 - kv^2) = -gx + c'$ M1 A1
 $c' = c$, when $x = 0$, $\ln (1 - kv^2) = -\ln (1 + ku^2)$ M1 A1
 $1 - kv^2 = \frac{1}{1 + ku^2}$ $kv^2 = \frac{ku^2}{1 + ku^2}$ $v = \frac{u}{\sqrt{1 + ku^2}}$ M1 A1