Solution Bank

Chapter Review

- **1** Impulse = change in momentum $= 0.5(23\mathbf{i} + 20\mathbf{j}) - 0.5(-25\mathbf{i})$ $= (24i + 10j)$ N s
	- ∴ Magnitude of the impulse = $\sqrt{24^2 + 10^2}$ N s $= 26$ N s

Angle between the impulse and the direction **i** is α where

 $\tan \alpha = \frac{10}{34}$ $\alpha = \frac{16}{24}$ $\therefore \quad \alpha = 23^{\circ}$ (nearest degree)

2 Let velocity before being hit be **u** m s[−]¹

impulse = change in momentum

2.4 3.6 0.2(12 5) 0.2 0.2 2.4 2.4 3.6 2.6 13 + = +− = +− − = − ∴ =− **i j ij u ij i j j u j** *u*

The velocity of the ball immediately before it is hit is $-13j$ m s⁻¹

3 Using conservation of linear momentum: momentum before = momentum after $4(2i+16j)+3(-i-8j)=4(-4i-32j)+3v_{\mathcal{Q}}$ $_{Q} = (7i + 56j)$ m s⁻¹ $8i + 64j - 3i - 24j = -16i - 128j + 3v_Q$ $3v_{\varrho} = 21i + 168j$ $\mathbf{v}_o = (7\mathbf{i} + 56\mathbf{j}) \text{ m s}^{-1}$

4 **a**
$$
= (t^3 + t^2 + 4t)\mathbf{i} + 11t\mathbf{j}, t \le 4
$$

\n $v = \frac{d\mathbf{r}}{dt} = (3t^2 + 2t + 4)\mathbf{i} + 11\mathbf{j}$
\nWhen $t = 4$
\n $\frac{d\mathbf{r}}{dt} = (3(4)^2 + 2(4) + 4)\mathbf{i} + 11\mathbf{j}$
\n $= 60\mathbf{i} + 11\mathbf{j}$
\n $\left|\frac{d\mathbf{r}}{dt}\right| = \sqrt{60^2 + 11^2}$
\n $= 61 \text{ m s}^{-1}$

Solution Bank

- 4 **b** Impulse = $mv mu$ 2.4 **i** + 3.6**j** = 0.3 (**v** – (60**i** + 11**j**)) 8**i** + 12**j** = **v** – (60**i** + 11**j**) **v** = (68**i** + 23**j**) m s−¹
- **5** Using conservation of linear momentum gives: $mu_1 - mu_2 = mv$ $u_1 - u_2 = v$ **(1)** Newton's law of restitution gives: $e = \frac{\text{speed of approach}}{1 - e}$ speed of separation $1 - 1$ $1 + r_1$ $\frac{1}{2} = \frac{v}{\sqrt{2}} \implies u_1 + v_1 = 3v$ 3 $\frac{v}{u} \implies u_1 + v_1 = 3v$ $u_1 + v$ $=\frac{v}{\sqrt{2}}\Rightarrow u_1+v_1=$ + **(2)** Solving **(1)** and **(2)** gives: $u_1 = 2v$ and $u_2 = v$ So the ratio of speeds is 2:1
- **6** Using conservation of linear momentum: momentum before = momentum after

$$
m \times \frac{1}{4} u = \lambda m v
$$

$$
v = \frac{u}{4\lambda} \qquad (1)
$$

Newton's law of restitution gives: $e = \frac{\text{speed of approach}}{\text{1-c}}$ speed of separation 1 4 1 4 *v u* =

$$
v=\frac{u}{16}\qquad (2)
$$

Solving **(1)** and **(2)** gives:

$$
\frac{u}{4\lambda} = \frac{u}{16}
$$

$$
\lambda = 4
$$

Solution Bank

7 a Note that the boat moves in the opposite direction to the boy after the boy dives off.

Using conservation of linear momentum for the system (\rightarrow) :

$$
0 = mv - MV
$$

$$
\Rightarrow V = \frac{mv}{M}
$$

b Let total kinetic energy of boy and boat after the dive be *KE*

$$
KE = \frac{1}{2}MV^2 + \frac{1}{2}mv^2
$$

= $\frac{1}{2}M\left(\frac{mv}{M}\right)^2 + \frac{1}{2}mv^2$
= $\frac{m^2v^2 + mMv^2}{2M}$
= $\frac{m(m+M)v^2}{2M}$ as required

c The boat is large and heavy, so there will be additional tilting/rolling motion. The boat is also on water, so given waves, tides and currents it is unlikely to be at rest initially.

8

Using conservation of linear momentum for the system (\rightarrow) :

$$
4 \times 5 + 2 \times (-3) = 4v + 2 \times 2
$$

$$
4v = 10 \Rightarrow v = 2.5 \,\mathrm{m\,s}^{-1}
$$

Loss of kinetic energy = initial kinetic energy - final kinetic energy

$$
= \frac{1}{2} \times 4 \times 5^2 + \frac{1}{2} \times 2 \times 3^2 - (\frac{1}{2} \times 4 \times 2.5^2 + \frac{1}{2} \times 2 \times 2^2)
$$

= 50 + 9 - 12.5 - 4 = 42.5 J

Solution Bank

9 a

Using conservation of linear momentum for the system (\rightarrow) :

 $3mu = 3mv + mw$ \Rightarrow 3*v* + *w* = 3*u* (1)

Using Newton's law of restitution:

$$
e = \frac{w - v}{u}
$$

\n
$$
\Rightarrow w - v = eu
$$
 (2)

Subtracting equation **(2)** from equation **(1)** gives:

 $4v = 3u - eu \Rightarrow v = \frac{u(3-e)}{4}$ 4 $v = 3u - eu \Rightarrow v = \frac{u(3-e)}{4}$

b Substituting for *v* in equation **(2)** gives: $(3-e)$ $4eu + 3u - eu$ $3u(e+1)$ 4 4 4 $w = eu + \frac{u(3-e)}{4} = \frac{4eu + 3u - eu}{4} = \frac{3u(e)}{4}$ $=eu + \frac{u(3-e)}{t} = \frac{4eu + 3u - eu}{t} = \frac{3u(e+1)}{t}$

Loss of kinetic energy = initial kinetic energy - final kinetic energy

$$
= \frac{1}{2} \times 3mu^2 - \frac{1}{2} \times 3mv^2 - \frac{1}{2}mw^2
$$

= $\frac{m}{2} \left(3u^2 - 3\frac{u^2(3-e)^2}{16} - 9\frac{u^2(1+e)^2}{16} \right)$
= $\frac{3mu^2}{32} \left(16 - (9 - 6e + e^2) - (3 + 6e + 3e^2) \right)$
= $\frac{3mu^2}{32} (4 - 4e^2)$
= $\frac{3mu^2(1-e^2)}{8}$

c Impulse exerted on *Q* is change of momentum of $Q = mw = \frac{3mu(1+e)}{1}$ Ns 4 $= mw = \frac{3mu(1+e)}{4}$

Solution Bank

10 a

Using conservation of linear momentum for the system (\rightarrow) :

 $0.07 \times 4 + 0.1 \times (-8) = 0.07 v + 0.1 w$ $\Rightarrow 7v + 10w = -52$ (1)

Using Newton's law of restitution:

5 $12 \quad 4-(-8)$ \Rightarrow *w*-*v*=5 (2) $=\frac{5}{12}=\frac{w-v}{4-(-8)}$ *e*

Adding equation **(1)** and $7 \times$ equation **(2)** gives: $17w = -52 + 35 = -17 \Rightarrow w = -1$

Substituting in equation **(2)** gives: $-1 - v = 5 \implies v = -6$

So the velocities after impact are 6ms^{-1} and 1ms^{-1} in the direction of the 100g mass prior to the impact.

b Let loss of kinetic energy in the collision be *KE*

 $KE =$ initial kinetic energy $-$ final kinetic energy

$$
= \frac{1}{2} \times 0.07 \times 4^{2} + \frac{1}{2} \times 0.1 \times (-8)^{2} - (\frac{1}{2} \times 0.07 \times (-6)^{2} + \frac{1}{2} \times 0.1 \times (-1)^{2})
$$

= (0.56 + 3.2) - (1.26 + 0.05) = 2.45 J

Solution Bank

11

Using conservation of linear momentum for the system (\rightarrow) :

 $2 \times 35 + 10 \times 20 = 2v + 10w$ \Rightarrow 2 $v + 10w = 270$ (1)

Using Newton's law of restitution:

$$
e = \frac{3}{5} = \frac{w - v}{35 - 20}
$$

\n
$$
\Rightarrow w - v = 9
$$
 (2)

Adding equation **(1)** and $2 \times$ equation **(2)** gives: $12w = 270 + 18 = 288 \implies w = 24$

Substituting in equation **(2)** gives: $24 - v = 9 \implies v = 15$

After the impact, assume that the particles move at constant speed and use speed \times time = distance.

Five seconds after the impact the 10kg mass moved a distance $24 \times 5 = 120$ m It takes the 2kg mass a time of $\frac{120}{15}$ 15 to travel 120 m, i.e. 8 seconds.

The time that elapses between the 10kg sphere resting on the barrier and it being struck by the 2 kg sphere therefore = $8 s - 5 s = 3$ seconds.

Solution Bank

12 First consider impact of *A* with *B*, then of *B* with *C*, then of *A* with *B* again. **Before the first collision After the first collision**

Using conservation of linear momentum for the system (\rightarrow) :

$$
4V = 4v + 3w \Rightarrow 4v + 3w = 4V \tag{1}
$$

Using Newton's law of restitution:

$$
e = \frac{3}{4} = \frac{w - v}{V} \Rightarrow 4w - 4v = 3V
$$
 (2)

Adding equations **(1)** and **(2)** gives: $7w = 7V \implies w = V$

Substituting in equation **(2)** gives: $4V - 4v = 3V \Rightarrow v = 0.25V$

Using conservation of linear momentum for the system (\rightarrow) :

$$
3V = 3x + 3y \implies x + y = V
$$
 (3)

Using Newton's law of restitution:

$$
e = \frac{3}{4} = \frac{y - x}{V} \implies y - x = 0.75V
$$
 (4)

Adding equations **(3)** and **(4)** gives: $2y = 1.75V \implies y = 0.875V$

Substituting in equation **(4)** gives: $0.875V - x = 0.75V \implies x = 0.125V$

Solution Bank

12 (cont.)

Ball *A* is now moving at 0.25*V* and ball *B* is moving at 0.125*V* so ball *A* will strike ball *B* for a second time.

Using conservation of linear momentum for the system (\rightarrow) :

$$
(4 \times 0.25)V + (3 \times 0.125)V = 4j + 3k
$$

\n
$$
\Rightarrow 4j + 3k = 1.375V
$$
 (5)

Using Newton's law of restitution:

$$
e = \frac{3}{4} = \frac{k - j}{0.125V}
$$

\n
$$
\Rightarrow 4k - 4j = 0.375V
$$
 (6)

Adding equations **(5)** and **(6)** gives: $7k = 1.75V \Rightarrow k = 0.25V$

Substituting in equation **(6)** gives: $V - 4j = 0.375V \implies j = 0.15625V$

After three collisions the velocities are 0.15625*V*, 0.25*V* and 0.875*V* for balls *A*, *B* and *C* respectively. In fractions, the respective velocities are $\frac{5}{32}V, \frac{1}{4}V$ and $\frac{7}{8}V$.

As $\frac{5}{32}V < \frac{1}{4}V < \frac{7}{8}V$ there are no further collisions.

13 a Newton's law of restitution gives:

$$
e = \frac{\text{speed of rebound}}{\text{speed of approach}}
$$

0.4 = $\frac{v}{30}$
 $v = 12$
Kinetic energy before collision:
KE_{before} = $\frac{1}{2} \times 0.2 \times 30^2$
= 90 J
Kinetic energy after collision:
KE_{after} = $\frac{1}{2} \times 0.2 \times 12^2$
= 14.4 J
Therefore loss in kinetic energy:
KE_{loss} = 90 - 14.4
= 75.6 J

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 8

Solution Bank

13 b heat/sound

14 a

Using conservation of linear momentum for the system (\rightarrow) :

$$
4u = 3y + 4x
$$

\n
$$
\Rightarrow 3y + 4x = 4u
$$
 (1)

Using Newton's law of restitution:

$$
e = \frac{y - x}{u}
$$

\n
$$
\Rightarrow y - x = eu
$$
 (2)

Adding equation **(1)** and $4 \times$ equation **(2)** gives:

$$
7y = 4u + 4eu \Rightarrow y = \frac{4}{7}u(1+e)
$$

Substituting in equation **(2)** gives:

$$
\frac{4}{7}u(1+e) - x = eu
$$

\n
$$
\Rightarrow x = \frac{4u + 4eu - 7eu}{7} = \frac{u}{7}(4-3e)
$$

b Impulse = change in momentum of *B* So $2mu = 3m \times \frac{4}{7}u(1+e)$ $1+e=\frac{14}{12}$ $\Rightarrow e = \frac{1}{6}$

Solution Bank

15 a

Using conservation of linear momentum for the system (\rightarrow) :

$$
mkV + \lambda mV = \lambda mX
$$

$$
\Rightarrow X = \frac{(\lambda + k)V}{\lambda}
$$

Using Newton's law of restitution:

$$
e = \frac{X}{kV - V}
$$

= $\frac{(\lambda + k)V}{\lambda(kV - V)}$ (substituting for X)
= $\frac{\lambda + k}{\lambda(k - 1)}$

b As
$$
e < 1
$$
, $\frac{\lambda + k}{\lambda(k-1)} < 1$
\nSo $\lambda + k < \lambda k - \lambda$ (as $\lambda > 0$ and $k > 1$)
\n $2\lambda + k < \lambda k$
\n $\lambda k - 2\lambda > k$
\n $\lambda(k-2) > k$

Since $k > 0$ and $\lambda > 0$, therefore $k - 2 > 0$ So $\lambda > \frac{\pi}{1 - \epsilon}$ and $k > 2$ 2 $\frac{k}{2}$ and k $\lambda > \frac{k}{k-2}$ and $k >$

Solution Bank

16 a Use $v = u + at$ downwards with $u = 0$, $t = 1$ and $a = 9.8$ to find the velocity of the first ball before impact. This gives:

 $v = 9.8$

Before collision After collision $9.8 \,\mathrm{m s^{-1}}$ *A* (*m*) 7ms^{-1} *B* (*m*) *v*¹ *A* (*m*) *v*² *B* (*m*)

Using conservation of linear momentum for the system (\downarrow) :

 $9.8m - 7m = mv₂ + mv₁$ \Rightarrow $v_2 + v_1 = 2.8$ (1)

Using Newton's law of restitution:

$$
e = \frac{1}{4} = \frac{v_2 - v_1}{9.8 + 7}
$$

\n
$$
\Rightarrow v_2 - v_1 = 4.2
$$
 (2)

Adding equations **(1)** and **(2)** gives: $2v_2 = 7 \implies v_2 = 3.5 \,\text{m s}^{-1}$

Substituting in equation **(2)** gives:

$$
3.5 - v_1 = 4.2
$$

$$
\Rightarrow v_1 = -0.7 \,\mathrm{m}\,\mathrm{s}^{-1}
$$

Both balls change directions, the first moves up with speed 0.7m s^{-1} and the second moves down with speed 3.5 ms^{-1} .

b Kinetic energy before impact = $\frac{1}{2}$ $m \times 9.8^2 + \frac{1}{2}$ $m \times 7^2 = 72.52$ *m* J Kinetic energy after impact = $\frac{1}{2}m \times 0.7^2 + \frac{1}{2}m \times 3.5^2 = 6.37m$ J Percentage loss of kinetic energy = $\frac{72.52 - 6.37}{72.52}$ = 91.2% = 91% (2s.f.)

Solution Bank

17 a Stage one: particle falls under gravity ↓: Use $v^2 = u^2 + 2as$ downwards with $u = 0$, $s = 8$ and $a = g$ $v^2 = 2g \times 8 = 16g \Rightarrow v = \sqrt{16g}$

> Stage two: first impact: The particle rebounds with velocity $\frac{1}{4}\sqrt{16g} = \sqrt{g}$

Stage three: particle moves under gravity ↑: Let the height to which the ball rebounds after the first bounce be h_1 Use $v^2 = u^2 + 2as$ upwards with $v = 0$, $u = \sqrt{g}$, $a = -g$ and $s = h_1$ $0 = g - 2gh_1$ \Rightarrow $h_1 = 0.5$ m

b Use $v = u + at$ upwards with $v = 0$, $u = \frac{1}{4}\sqrt{16g}$ and $a = -g$ to find the time it takes the particle to reach the top of the bounce

$$
0 = \frac{1}{4}\sqrt{16g} - gt
$$

$$
\Rightarrow t = \frac{\sqrt{g}}{g} = 0.319
$$

So the time taken to reach the plane again $= 2 \times 0.319 = 0.64$ s (2 s.f.) or $\frac{2}{\sqrt{5}}$ s *g* $= 2 \times 0.319 =$

c Speed of approach = \sqrt{g}

The speed of the particle after the second rebound $= e\sqrt{g} = \frac{\sqrt{g}}{4} = 0.78 \text{ m s}^{-1}$ (2 s.f.)

Solution Bank

18 Stage one: particle falls under gravity ↓ :

Use $v^2 = u^2 + 2as$ downwards with $u = 0$, $s = h$ and $a = g$ $v^2 = 2gh \Rightarrow v = \sqrt{2gh}$

Use $s = ut + \frac{1}{2}at^2$ to find the time to the first bounce

$$
h = \frac{1}{2}gt_1^2 \implies t_1 = \sqrt{\frac{2h}{g}}
$$

Stage two: particle rebounds from plane. The particle rebounds with velocity $e\sqrt{2gh}$

Stage three: particle moves under gravity until it hits the plane again \uparrow :

Use $s = ut + \frac{1}{2}at^2$ to find the time from the first to the second bounce, $u = e\sqrt{2gh}$, $s = 0$ and $a = -g$ $0 = e\sqrt{2gh}t_2 - \frac{1}{2}gt_2^2$ $t_2 = \frac{2e\sqrt{2gh}}{g} = 2e\sqrt{\frac{2h}{g}}$ *g g* $=\frac{2c\sqrt{2}S^{\prime\prime}}{S}$

Stage four: particle rebounds (again) from plane. Speed of approach = $e\sqrt{2gh}$, so speed of rebound = $e^2\sqrt{2gh}$

Similar working finds that the time from the second bounce to the third bounce is $t_3 = 2e^2 \sqrt{\frac{2h}{g}}$ And the time from the third bounce to the fourth bounce is $t_4 = 2e^3 \sqrt{\frac{2h}{g}}$...

Let the total time taken by the particle be *T*, then

$$
T = \sqrt{\frac{2h}{g}} + 2e\sqrt{\frac{2h}{g}} + 2e^{2}\sqrt{\frac{2h}{g}} + 2e^{3}\sqrt{\frac{2h}{g}} + ...
$$

$$
= \sqrt{\frac{2h}{g}} + 2\sqrt{\frac{2h}{g}}(e + e^{2} + e^{3} + ...)
$$

The expression in the bracket is an infinite geometric series with $a = e$ and $r = e$. Using the formula $S_{\infty} = \frac{a}{1 - r} = \frac{e}{1 - e}$, the expression for *T* can be simplified as follows

$$
T = \sqrt{\frac{2g}{h}} \left(1 + \frac{2e}{1 - e} \right) = \left(\frac{1 - e + 2e}{1 - e} \right) \sqrt{\frac{2h}{g}} = \frac{1 + e}{1 - e} \sqrt{\frac{2h}{g}}
$$

Solution Bank

19

Using conservation of linear momentum for the system (\rightarrow) :

$$
mu = mv + 8mw \Rightarrow v + 8w = u \tag{1}
$$

Using Newton's law of restitution:

$$
e = \frac{7}{8} = \frac{w - v}{u} \Rightarrow 8w - 8v = 7u
$$
 (2)

Subtracting equation **(2)** from equation **(1)** gives: $9v = u - 7u \Rightarrow v = -\frac{2}{3}u$

Substituting in equation **(2)** gives:

 $8w + \frac{16u}{2} = 7u \Rightarrow 8w = \frac{5u}{2} \Rightarrow w = \frac{5}{2}$ 3 3 24 $w + \frac{16u}{2} = 7u \Rightarrow 8w = \frac{5u}{2} \Rightarrow w = \frac{5u}{24}$

Let e_{vp} be the coefficient of restitution between P and the vertical place.

So *P* then hits the vertical plane with speed $\frac{2}{7}$ 3 $\frac{u}{2}$ and rebounds with speed $\frac{2}{3}ue_{vp}$

Before second impact of *P* **and** *Q* **After second impact of** *P* **and** *Q*

Using conservation of linear momentum for the system (\rightarrow) :

$$
\frac{2}{3}mu e_{vp} + \frac{5}{3}mu = 8mx \quad \Rightarrow 24x = 2ue_{vp} + 5u \tag{3}
$$

Using Newton's law of restitution:

$$
e = \frac{7}{8} = \frac{x}{2} \implies \frac{7}{8} \left(\frac{2}{3} u e_{vp} - \frac{5}{24} u \right) = x \implies 24x = 14 u e_{vp} - \frac{35}{8} u \tag{4}
$$

Subtracting equation **(4)** from equation **(3)** gives: $12ue_{vp} = 5u + \frac{35}{8}u = \frac{75}{8}u \Rightarrow e_{vp} = \frac{75}{96} = \frac{25}{32}$

Solution Bank

20 The kinetic energy generated on 'bowling' is:

$$
E = \frac{1}{2}MV^2 + \frac{1}{2}mv^2
$$
 (1)

Where *V* is the speed of the machine after 'bowling' and *v* is the speed of the ball Using conservation of linear momentum: momentum before = momentum after

 $0 = MV + mv$

$$
V = -\frac{mv}{M} \tag{2}
$$

Substituting **(1)** into **(2)** gives:

$$
E = \frac{1}{2}M\left(-\frac{mv}{M}\right)^2 + \frac{1}{2}mv^2
$$

$$
2E = \frac{m^2v^2}{M} + mv^2
$$

$$
2ME = m^2v^2 + mMv^2
$$

$$
v^2 = \frac{2ME}{m^2 + mM}
$$

$$
v = \sqrt{\frac{2ME}{m(m+M)}}
$$

21 a Using $v^2 = u^2 + 2as$ downwards with $u = 0$, $s = H$ and $a = g$ $v^2 = 2gH \Rightarrow v = \sqrt{2gH}$

The ball rebounds with speed $e\sqrt{2gH}$ Using $v^2 = u^2 + 2as$ upwards with $u = e\sqrt{2gH}$, $s = h$ and $a = -g$ $0 = 2gHe^{2} - 2gh$ $e^2 = \frac{h}{H} \Rightarrow e = \sqrt{\frac{h}{H}}$ *H H* $=\frac{n}{\pi} \Rightarrow e=$

- **b** The ball rebounds the second time with speed $e^2 \sqrt{2gH}$ Using $v^2 = u^2 + 2as$ upwards with $u = e^2 \sqrt{2gH}$, $s = h'$ and $a = -g$ $0 = 2gHe^{4} - 2gh'$ μ^4 μ $\left(h\right)^2$ μ^2 μ^2 μ^2 $h' = He^{4} = H\left(\frac{h}{H}\right)^{2} = \frac{Hh^{2}}{H^{2}} = \frac{h}{h}$ $A' = He^{4} = H\left(\frac{h}{H}\right)^{2} = \frac{Hh^{2}}{H^{2}} = \frac{h^{2}}{H}$ ^{4}H - $\left(h\right) ^{2}$ ^{2}H - $h^{2}H$ - h^{2} $h' = e^{4}H = \left(\frac{h}{H}\right)^{2}H = \frac{h^{2}H}{H^{2}} = \frac{h}{h}$ $f = e^{4}H = \left(\frac{h}{H}\right)^{2} H = \frac{h^{2}H}{H^{2}} = \frac{h^{2}}{H}$
- **c** The ball continues to bounce (for an infinite amount of time) with its height decreasing by a common ratio each time.

Solution Bank

22 a Use $F = ma$ to determine the acceleration of the sphere down the smooth slope. This gives:

$$
2g\sin 30^\circ = 2a \Rightarrow a = g\sin 30^\circ = \frac{g}{2} = 0.5g
$$

Use $v^2 = u^2 + 2as$ with $u = 0$, $s = 2$ and $a = 0.5g$ to find the speed of the ball when it reaches the horizontal plane: $v^2 = 2g \Rightarrow v = \sqrt{2g}$

Using conservation of linear momentum for the system (\rightarrow) :

$$
2\sqrt{2g} = 2v + w
$$

\n
$$
\Rightarrow 2v + w = 2\sqrt{2g}
$$
 (1)

Using Newton's law of restitution:

$$
e = 0.75 = \frac{w - v}{\sqrt{2g}}
$$

\n
$$
\Rightarrow w - v = 0.75\sqrt{2g}
$$
 (2)

Adding equation **(1)** and $2 \times$ equation **(2)** gives:

$$
3w = 2\sqrt{2g} + 1.5\sqrt{2g} = 3.5\sqrt{2g} \Rightarrow w = \frac{7}{6}\sqrt{2g} \text{ ms}^{-1}
$$

Substituting in equation **(2)** gives:

$$
\frac{7}{6}\sqrt{2g} - v = \frac{3}{4}\sqrt{2g}
$$

\n
$$
\Rightarrow v = \left(\frac{14}{12} - \frac{9}{12}\right)\sqrt{2g} = \frac{5}{12}\sqrt{2g} \text{ ms}^{-1}
$$

Both *B* and *C* continue in the direction *B* was originally moving.

b Energy lost in the collision = initial kinetic energy – final kinetic energy

$$
= \frac{1}{2} \times 2 \times (\sqrt{2g})^2 - \left(\frac{1}{2} \times 2 \times \left(\frac{5\sqrt{2g}}{12}\right)^2 + \frac{1}{2} \times 1 \times \left(\frac{7\sqrt{2g}}{6}\right)^2\right)
$$

$$
= 2g - \left(\frac{50g}{144} + \frac{98g}{72}\right) = 2g - \left(\frac{50g}{144} + \frac{98g}{72}\right) = \frac{42g}{144} = \frac{7g}{24} \text{ J}
$$

c If *e* < 0.75 the amount of kinetic energy lost would increase as the collision would be less elastic.

Solution Bank

Suppose point *Q* is at a distance *x* from wall W_1

Consider the motion of sphere *A*:

Time taken for *A* to travel from point *P* to wall W_1 is $\frac{\text{distance}}{\text{speed}} = \frac{2a}{2}$ $=\frac{2d}{2}=d$

Sphere *A* rebounds with speed $\frac{3}{5} \times 2 = \frac{6}{5} \text{ m s}^{-1}$

Time taken for *A* to travel from wall W_1 to point *Q* is $\frac{d\theta}{dt} = \frac{R}{\frac{6}{5}}$ distance \overline{x} $\overline{5}$ speed $\frac{6}{5}$ 6 $=\frac{x}{x}=\frac{5x}{x}$

Consider the motion of sphere *B*:

Time taken for *B* to travel from point *P* to wall W_2 is $\frac{\text{distance}}{\text{speed}} = \frac{d}{3}$ $=\frac{d}{2}$

Sphere *B* rebounds with speed $\frac{3}{5} \times 3 = \frac{9}{5} \text{ m s}^{-1}$

Time taken for *B* to travel from W_2 to point Q is $\frac{\text{distance}}{\text{speed}} = \frac{3d - x}{\frac{9}{5}} = \frac{5(3d - x)}{9}$ distance $3d - x$ $5(3d - x)$ $15d - 5$ speed $\frac{9}{5}$ 9 9 $=\frac{3d-x}{a}=\frac{5(3d-x)}{a}=\frac{15d-5x}{a}$

When *A* and *B* meet at *Q*, they have been travelling for the same time, so $5x \quad d \quad 15d - 5$ 63 9 $18d + 15x = 6d + 30d - 10x$ $25x = 18d$ $\frac{18d}{25}$ and $3d - x = \frac{57}{3}$ 25 25 $d + \frac{5x}{6} = \frac{d}{2} + \frac{15d - 5x}{6}$ \Rightarrow *x* = $\frac{18d}{25}$ and 3*d* – *x* = $\frac{57d}{25}$ $18d + 15x = 6d + 30d - 10x$

Therefore the distance ratio $W_1Q: W_2Q = x: 3d - x = \frac{18d}{25} : \frac{57d}{25} = 18: 57 = 6:19$ 25 25 $W_1Q: W_2Q = x: 3d - x = \frac{18d}{25} : \frac{57d}{25} = 18:57 =$

Solution Bank

Challenge

- **1 a** Using conservation of linear momentum: momentum before = momentum after $mu - kmu = \pm (m + km)v$ $mu - kmu = mv + kmv$ *mu – mv = kmu + kmv* $k = \frac{u - v}{u}$ $=\frac{u-v}{u+v}$ Or *mu – kmu = –mv – kmv mu* + *mv* = kmu – kmv $k = \frac{u + v}{u}$ $=\frac{u+v}{u-v}$ Since *k* is positive $u > v$
	- **b** If $k = \frac{u v}{u}$ $=\frac{u-v}{u+v}$ then *Q* changes direction. If $k = \frac{u + v}{u}$ $=\frac{u+v}{u-v}$ then *P* changes direction.

Solution Bank

2

Using conservation of linear momentum for the system (\rightarrow) :

 $m_3 u = m_2 v_1 + m_3 v_1$ $m_3 u = v_1 (m_2 + m_3)$ $S_1 = \frac{m_3}{\sqrt{m_1}}$ $(m_2 + m_3)$ $v_1 = \frac{m_3 u}{\sqrt{m_3}}$ $m_2 + m$ \Rightarrow v_1 = +

Using conservation of linear momentum for the system (\rightarrow) :

$$
m_2v_1 + m_3v_1 = m_1v_2 + m_2v_2 + m_3v_2
$$

\n
$$
v_1(m_2 + m_3) = v_2(m_1 + m_2 + m_3)
$$

\n
$$
\Rightarrow v_2 = \frac{v_1(m_2 + m_3)}{(m_1 + m_2 + m_3)} = \frac{m_3u}{(m_1 + m_2 + m_3)}
$$

\nTotal kinetic energy = $\frac{1}{2}(m_1 + m_2 + m_3)v_2^2$
\n
$$
= \frac{1}{2}(m_1 + m_2 + m_3) \left(\frac{m_3u}{(m_1 + m_2 + m_3)}\right)^2
$$

\n
$$
= \frac{m_3^2u^2}{2(m_1 + m_2 + m_3)}
$$