Solution Bank

Chapter Review

Power = Fv

 $480 = T \times 6$

 $\frac{480}{6} = 80$ $T=\frac{100}{6}$

6 Resolving parallel to the slope:

 $T = R + 70g \sin 5^\circ$

 $80 = R + 70 \times 9.8 \sin 5^{\circ}$

 $R = 80 - 70 \times 9.8 \sin 5^{\circ}$

$$
R=20.21...
$$

The magnitude of the resistance is $20.2 \text{ N } (3 \text{ s.f.})$

2 a P.E. gained by water and bucket *mgh*

$$
= 12 \times 9.8 \times 25
$$

$$
= 2940
$$

Initial K.E. = final K.E. = 0 Work done by the $boy = P.E.$ gained by bucket $= 2940$ J

b Average rate of working
$$
=
$$
 $\frac{\text{work done}}{\text{time taken}} = \frac{2940}{30}$

$$
= 98
$$

The average rate of working of the boy is 98 J s^{−1} (or 98 W)

 $=20$ Work done by friction $=$ K.E. lost by particle **• Work done by friction = 20 J**

Mechanics 2

Solution Bank

3 b Resolving vertically: $R = 0.5g$ Friction is limiting: $F = \mu R = \mu \times 0.5g$ Work done by friction $= F \times s$ $20 = \mu \times 0.5 g \times 25$

$$
\mu = \frac{20}{0.5g \times 25} = 0.1632...
$$

The coefficient of friction is 0.163 (3 s.f.)

a Resolving perpendicular to the plane for *A*: $R = 2mg\cos\theta$ Friction is limiting: $F = \frac{3}{8} \times 2mg \cos \theta$ $=\frac{3}{8}\times 2mg \times \frac{4}{5}$ $=$ $\frac{3}{5}mg$ $F = \mu R$ $T - (\frac{3}{5}mg + 2mg \times \frac{3}{5}) = 2ma$ $F = ma$ for $A: \quad T - (F + 2mg \sin \theta) = 2ma$ $\frac{9mg}{5} = 2ma$ (1) 5 $T - \frac{9mg}{5} = 2ma$ $F = ma$ for *B*: $5mg - T = 5ma$ (2) $(1) + (2)$: $5mg - \frac{9mg}{5} = 7r$ 5 $\frac{16mg}{5} = 7$ 5 $16g$ 16 × 9.8 35 35 $a = 4.48$ $mg - \frac{9mg}{5} = 7ma$ $\frac{mg}{2} = 7ma$ $a = \frac{16g}{25} = \frac{16\times}{}$

The initial acceleration of *A* is 4.48 m s^{-2}

Solution Bank

The motion must be considered in two parts, before and after the string breaks. The friction force acting on *A* is the same

throughout the motion.

4 b For the first 1 m *A* travels \leftarrow

 $a = 4.48$ m s⁻² $u=0$ $s = 1$ m $\nu = ?$

 $v^2 = u^2 + 2as$ $v^2 = 2 \times 4.48 \times 1$ $v^2 = 8.96$

After string breaks:

Loss of K.E. (of *A*) =
$$
\frac{1}{2}mu^2 - \frac{1}{2}mv^2
$$

\n= $\frac{1}{2} \times 2m \times 8.96 - 0$
\n= 8.96 *m*
\nGain of P.E. (of *A*) = *mgh*
\n= $2mg \times (x \sin \theta)$
\n= $2mg \times x \times \frac{3}{5}$
\n= $\frac{6mgx}{5}$

where x is the distance moved up the plane.

Work done by friction $=\frac{3}{5}$ 5 $=\frac{3mg}{5} \times x$ Work–energy principle: $\frac{3mgx}{5} + \frac{6mgx}{5} = 8.96$ 5 5 $\frac{9gx}{5} = 8.96$ 5 8.96×5 9×9.8 $x = 0.5079...$ $\frac{mgx}{f} + \frac{6mgx}{f} = 8.96m$ $\frac{gx}{f} =$ $x = \frac{8.96 \times}{8.00}$ \times

Total distance moved $= 1 + 0.5079...$

$$
=1.51
$$

The total distance moved by *A* before it first comes to rest is $1.51 \text{ m} (3 \text{ s.f.})$

Solution Bank

Ensure units are consistent.

5 a \longrightarrow 15 m s⁻¹ \longrightarrow a m s⁻²

$$
500 \text{ N} \leftarrow 800 \text{ kg} \longrightarrow T
$$

\n
$$
Power = Fv
$$

\n
$$
16000 = T \times 15
$$

\n
$$
T = \frac{16000}{15}
$$

\nUsing $F = ma$:
\n
$$
T - 500 = 800a
$$

\n
$$
\frac{16000}{15} - 500 = 800a
$$

\n
$$
a = \frac{16000}{800} - 500
$$

\n
$$
a = 0.7083...
$$

The acceleration is 0.708 m s^{-2}

 b

15 Resolving parallel to the slope and using $F = ma$: $T' - 500 - 800g \sin 5^\circ = 800a'$ $\frac{24000}{15} - 500 - 800 \times 9.8 \sin 5^{\circ} = 800$ 15 $800a' = 416.698...$ $-500 - 800 \times 9.8 \sin 5^\circ = 800a'$

$$
a'=0.5208\ldots
$$

The new acceleration is 0.521 m s^{-2} (3 s.f.)

Solution Bank

 $\tan \theta = \frac{1}{20}$ so $\theta = 2.8624^{\circ}$ Resolving parallel to the slope: $T + 750g \sin \theta = 1000$ $T = 1000 - 750 \times 9.8 \sin 2.8624^{\circ}$ $T = 632.95$

Power = Fv

 b

 $= 632.95 \times 18$

 $=$ 11393.2...

The rate of working of the car's engine is 11.4 kW (3 s.f.)

Resolving parallel to the slope and using $F = ma$: $1000 - 750 \times 9.8 \times \sin \theta = 750a$

$$
a = \frac{1000 - 750 \times 9.8 \sin 2.8624^{\circ}}{750}
$$

 $a = 0.8439$

Consider motion down the slope: $a = -0.8439 \text{ m s}^{-2}$, $u = 18 \text{ m s}^{-1}$, $v = 0 \text{ m s}^{-1}$, $t = ?$

> $0 = 18 - 0.8439 \times t$ 18 0.8439 $t = 21.32...$ $v = u + at$ *t* The value of t is 21.3 (3 s.f.)

The tractive force is zero.

7

Solution Bank

a P.E. gained by $A = mgh$ $=2mg\times s\times\frac{3}{5}$ $= 2mg \times (s \times \sin \theta)$ 6 5 $=\frac{6mgs}{4}$ P.E. lost by $B = mgh$ 3 *mgs* $P.E.$ lost by system $= 3 mgs - \frac{6 mgs}{5} = \frac{9mgs}{5}$ 5 5 $=3mgs - \frac{6mgs}{5} = \frac{9mgs}{5}$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 6

Solution Bank

7 b Consider *A*:

Resolving perpendicular to the slope:

 $=2mg\times\frac{4}{5}$ $R = 2mg\cos\theta$ 8 5 $=\frac{8mg}{5}$

Friction is limiting:

$$
F = \mu R
$$

= $\frac{1}{4} \times \frac{8mg}{5}$
= $\frac{2mg}{5}$

Work done against friction *Fs*

$$
=\frac{2mgs}{5}
$$

K.E. gained by *A* and $B = \frac{1}{2}(2m)v^2 + \frac{1}{2}(3m)v^2$

$$
=\frac{5mv^2}{2}
$$

Work–energy principle:

K.E. gained + work done against friction = P.E. lost

$$
\frac{5mv^2}{2} + \frac{2mgs}{5} = \frac{9mgs}{5}
$$

$$
\frac{5mv^2}{2} = \frac{7mgs}{5}
$$

$$
v^2 = \frac{2 \times 7mgs}{5 \times 5m}
$$

$$
v^2 = \frac{14gs}{25}
$$

Find the frictional force and use the work–energy principle.

Mechanics 2

Solution Bank

8 a

Resolving parallel to the slope and using $F = ma$:

$$
5g\sin 25^\circ - F = 5a
$$

Friction is limiting:

 $F = 0.3 \times 5 g \cos 25^\circ$ $F = \mu R$ So $5g \sin 25^\circ - 5 \times 0.3 \times g \cos 25^\circ = 5a$

 $a = g(\sin 25^\circ - 0.3 \cos 25^\circ)$

Consider the motion down the slope.

$$
u = 0 \text{ and } t = 2
$$

\n
$$
v = u + at
$$

\n
$$
= 0 + 2g(\sin 25^\circ - 0.3 \cos 25^\circ)
$$

\n
$$
= 2g(\sin 25^\circ - 0.3 \cos 25^\circ)
$$

\n
$$
= 2.9542...
$$

After it has been moving for 2 s the parcel has speed 2.95 m s⁻¹ (3 s.f.)

 b In 2 s the parcel slides a distance *s* m down the sloping platform. Loss of P.E. $=$ *mgh*

$$
= mg \times s \sin 25^{\circ}
$$

\n
$$
= 5g \times s \sin 25^{\circ}
$$

\n
$$
u = 0, v = 2.954 \text{ m s}^{-1}, t = 2 \text{ s}
$$

\nUsing $s = \frac{u + v}{2} \times t$
\n
$$
s = \frac{0 + 2.954}{2} \times 2 = 2.954
$$

\nSo, loss of P.E. = $5g \times 2.954 \times \sin 25^{\circ}$
\n
$$
= 5 \times 9.8 \times 2.954 \times \sin 25^{\circ}
$$

\n
$$
= 61.17...
$$

During the 2 s, the parcel loses 61.2 J of potential energy (3 s.f.)

Solution Bank

9

Power = 4000 W
\nPower =
$$
Tv = 10T
$$

\nSo $T = \frac{4000}{10} = 400$ N
\nUsing $F = ma$:
\n $T = 2000 \times a$
\n $400 = 2000a$
\nSo $a = \frac{400}{2000} = 0.2$ m s⁻²

 Resolving parallel to the slope: $T = 200000 + 16000g \sin 12^{\circ}$

 $T = 232600.5...$

Work done in 10 s = force \times distance moved $= 232\,600... \times (14 \times 10)$ 32 564 000 (3 s.f.)

The work done in 10s is 32 600 000 J (or 32 600 kJ) (3 s.f.)

Solution Bank

b The work done by the force is 16.2 J

c Work done =
$$
F_s
$$

16.2 = $F \times 4$

$$
F = \frac{16.2}{4}
$$

$$
F = 4.05
$$

The force has magnitude 4.05 N

b Work done against friction = 250 J Work done $= Fs$ $250 = F \times 8$ 250 8 *F*

Resolving perpendicular to the slope: $R = 5g$ Friction is limiting: $F = \mu R$

$$
\frac{250}{8} = \mu \times 5g
$$

$$
\mu = \frac{250}{8 \times 5g}
$$

The coefficient of friction is 0.638 (3 s.f.)

Solution Bank

13

 \rightarrow 20 m s⁻¹ \rightarrow 0.3 m s⁻²

$$
R \longleftarrow \boxed{900 \text{ kg}} \longrightarrow T
$$

a Power = Fv
\n
$$
15000 = T \times 20
$$
\n
$$
T = \frac{15000}{20} = 750
$$
\nUsing F = ma:
\n
$$
T - R = 900 \times 0.3
$$
\n
$$
750 - R = 270
$$
\n
$$
R = 750 - 270
$$
\n
$$
R = 480
$$

The magnitude of the resistance is 480 N

 b

Resolving along the slope and using $F = ma$. $T' + 900g \sin 4^\circ - 480 = 900 \times 0.5$

 $T' = 450 + 480 - 900g \sin 4^\circ$

 $Power = Fv$ $8000 = (450 + 480 - 900 g \sin 4^\circ) v$ 8000 $(450 + 480 - 900g \sin 4^\circ)$ $v = 25.41...$ *v g* $=$ $+480-900g\sin 4^{\circ}$ The speed of the car is 25.4 m s^{-1} (3 s.f.)

Solution Bank

14

Power $= Fv$ Power = 4000 W $T = \frac{4000}{T}$ *v* $=\frac{1000}{1000}$ Resolving along the slope and using $F = ma$. $\frac{4000}{2}$ - 7000g sin10° = 7000 × 2 *v* $-7000g\sin 10^{\circ} = 7000\times$ $\frac{4000}{2}$ = 25912 *v* $= 25912$ So $v = \frac{4000}{25012} = 0.154$ 25912 $v = \frac{4000}{25012} = 0.154...$

The speed of the bus is 0.15 m s^{-1} (2 s.f.)

$$
\mu = \frac{3}{8}
$$

15

 a Resolving perpendicular to the floor: $R + 75\sin 15^\circ = 4g$

$$
R = 4g - 75\sin 15^{\circ}
$$

Friction is limiting:

$$
F = \mu R
$$

F = $\frac{3}{8}$ × (4 × 9.8 – 75 sin 15°)
F = 7.420...

The magnitude of the frictional force is 7.42 N (3 s.f.)

b Work done $= Fs$

 $=75\cos 15^\circ \times 6$ $= 434.66...$ The work done is 435 J (3 s.f.)

Mechanics 2

Solution Bank

15 c Using the work–energy principle:

K.E. gained $=$ work done by tension $-$ work done against friction

 $\frac{1}{2} \times 4v^2 = 434.66 - 7.420 \times 6$

$$
v^2 = \frac{1}{2}(434.66 - 7.420 \times 6)
$$

$$
v=13.96...
$$

The block is moving at 14.0 m s^{-1} (3 s.f.)

16 a \longrightarrow ym s⁻¹ \longrightarrow 0 m s⁻²

600 N \leftarrow 1800 kg \rightarrow T

At maximum speed, $a = 0$ Resolving along the road and using *F* = *ma*:

 $T - 600 = 0$ $T = 600$ $Power = Fv$ $20000 = 600v$ 20000 600 $v = 33.33$ *v* The lorry's maximum speed is 33.3 m s^{-1} (3 s.f.)

b
$$
\longrightarrow
$$
 20 m s⁻¹ \longrightarrow a m s⁻²

$$
600\,\mathrm{N} \longleftarrow 1800\,\mathrm{kg} \longrightarrow T'
$$

 $Power = Fv$ $20000 = T' \times 20$ $T' = 1000$ Using $F = ma$: $T' - 600 = 1800a$ $1000 - 600 = 1800a$ 400 1800 $a = 0.2222...$ *a* The acceleration of the lorry is 0.222 m s^{-2} (3 s.f.)

Solution Bank

17

c

 \rightarrow 20 m s⁻¹ \rightarrow 0 m s⁻² 600 N \leftarrow 1200 kg \rightarrow T **a** Resolving along the road: $T = 600$ $Power = Fv$ $=600\times 20$ $=12000 W$ $=12$ kW The power is 12 kW **b** \rightarrow 20 m s⁻¹ \rightarrow 0.5 m s⁻² $600 N \leftarrow$ $1200 kg$ \blacktriangleright T' *F ma* $T' - 600 = 1200 \times 0.5$ $T' = 600 + 600$ $T' = 1200$ Power = $F \times v$ $=1200\times 20$ $= 24000$ The new rate of working is 24 kW v_m $600 N$ 20° $1200g N$ Resolving along the slope: $T'' = 600 + 1200g \sin 20^\circ$ Power = Fv $50000 = (600 + 1200 g \sin 20^\circ) v$ 50000 *v* $(600+1200g\sin 20^{\circ})$ $v = 10.82...$

The value of ν is 10.8 (3.s.f.)

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 14

Mechanics 2

Solution Bank

Challenge

 a Car is moving with constant speed in a direction along the tangent to the cylinder. Resolving along the path of the car:

 $T = 3000$ g sin θ

Power = T_v Power = $3000g \sin \theta \times 20 = 60000g \sin \theta = 588000 \sin \theta$ W

b When $\theta = 0^{\circ}$, there is no force to act against, so no power is required. When $\theta = 90^{\circ}$, maximum power is needed.