Solution Bank

Chapter Review

Power = Fv

 $480 = T \times 6$

 $T = \frac{480}{6} = 80$

Resolving parallel to the slope:

 $T = R + 70g\sin 5^{\circ}$

 $80 = R + 70 \times 9.8 \sin 5^{\circ}$

$$R = 80 - 70 \times 9.8 \sin 5^{\circ}$$

$$R = 20.21...$$

The magnitude of the resistance is 20.2 N (3 s.f.)

2 a P.E. gained by water and bucket = mgh

-

Initial K.E. = final K.E. = 0 Work done by the boy = P.E. gained by bucket = 2940 J

b Average rate of working
$$=\frac{\text{work done}}{\text{time taken}} = \frac{2940}{30}$$

The average rate of working of the boy is 98 J s⁻¹ (or 98 W)

- **a** K.E. lost by particle $=\frac{1}{2} \times 0.5 \times 12^2 \frac{1}{2} \times 0.5 \times 8^2$ = 20 Work done by friction = K.E. lost by particle
 - \therefore Work done by friction = 20 J

INTERNATIONAL A LEVEL

Mechanics 2

4

Solution Bank

3 **b** Resolving vertically: R = 0.5gFriction is limiting: $F = \mu R = \mu \times 0.5g$ Work done by friction $= F \times s$ $20 = \mu \times 0.5g \times 25$ $\mu = \frac{20}{20} = 0.1$

$$u = \frac{20}{0.5g \times 25} = 0.1632...$$

The coefficient of friction is 0.163 (3 s.f.)

a Resolving perpendicular to the plane for A: $R = 2mg\cos\theta$ Friction is limiting: $F = \mu R$ $F = \frac{3}{8} \times 2mg \cos\theta$ $=\frac{3}{8}\times 2mg\times \frac{4}{5}$ $=\frac{3}{5}mg$ F = ma for A: $T - (F + 2mg\sin\theta) = 2ma$ $T - \left(\frac{3}{5}mg + 2mg \times \frac{3}{5}\right) = 2ma$ $T - \frac{9mg}{5} = 2ma \quad (1)$ F = ma for B: 5mg - T = 5ma(2) (1) + (2): $5mg - \frac{9mg}{5} = 7ma$ $\frac{16mg}{5} = 7ma$ $a = \frac{16g}{35} = \frac{16 \times 9.8}{35}$ a = 4.48

The initial acceleration of A is 4.48 m s⁻²

Solution Bank

The motion must be considered in two parts, before and after the string breaks.

throughout the motion.

The friction force acting on A is the same

4 b For the first 1 m A travels \leftarrow

u = 0 $a = 4.48 \text{ m s}^{-2}$ s = 1 mv = ?

 $v^{2} = u^{2} + 2as$ $v^{2} = 2 \times 4.48 \times 1$ $v^{2} = 8.96$

After string breaks:

Loss of K.E. (of A) =
$$\frac{1}{2}mu^2 - \frac{1}{2}mv^2$$

= $\frac{1}{2} \times 2m \times 8.96 - 0$
= 8.96 m
Gain of P.E. (of A) = mgh
= $2mg \times (x \sin \theta)$
= $2mg \times x \times \frac{3}{5}$
= $\frac{6mgx}{5}$

where x is the distance moved up the plane.

Work done by friction $= \frac{3mg}{5} \times x$ Work-energy principle: $\frac{3mgx}{5} + \frac{6mgx}{5} = 8.96m$ $\frac{9gx}{5} = 8.96$ $x = \frac{8.96 \times 5}{9 \times 9.8}$ x = 0.5079...Total distance moved = 1 + 0.5079...

The total distance moved by A before it first comes to rest is 1.51 m (3 s.f.)

Solution Bank

5 a

 \longrightarrow 15 m s⁻¹ \longrightarrow a m s⁻²

$$500 \text{ N} \longleftarrow 800 \text{ kg} \longrightarrow T$$
Power = Fv
 $16\,000 = T \times 15$

$$T = \frac{16\,000}{15}$$
Using $F = ma$:
 $T - 500 = 800a$

$$\frac{16\,000}{15} - 500 = 800a$$

$$a = \frac{16\,000}{15} - 500$$

$$a = \frac{16\,000}{800}$$

$$a = 0.7083...$$

The acceleration is 0.708 m s^{-2}

b

Power =
$$Fv$$

24000 = $T' \times 15$
 $T' = \frac{24000}{15}$
Resolving parallel to the slope and using $F = ma$:
 $T' - 500 - 800g \sin 5^\circ = 800a'$
 $\frac{24000}{15} - 500 - 800 \times 9.8 \sin 5^\circ = 800a'$
 $800a' = 416.698...$
 $a' = 0.5208...$

The new acceleration is 0.521 m s⁻² (3 s.f.)

Solution Bank

 $\tan \theta = \frac{1}{20}$ so $\theta = 2.8624^{\circ}$

Resolving parallel to the slope: $T + 750g \sin \theta = 1000$ $T = 1000 - 750 \times 9.8 \sin 2.8624^{\circ}$ T = 632.95

Power = Fv

b

 $= 632.95 \times 18$

=11393.2...

The rate of working of the car's engine is 11.4 kW (3 s.f.)

Resolving parallel to the slope and using F = ma: 1000-750×9.8×sin θ = 750*a*

$$a = \frac{1000 - 750 \times 9.8 \sin 2.8624^\circ}{750}$$

a = 0.8439

Consider motion down the slope: $a = -0.8439 \text{ m s}^{-2}, u = 18 \text{ m s}^{-1}, v = 0 \text{ m s}^{-1}, t = ?$

v = u + at $0 = 18 - 0.8439 \times t$ $t = \frac{18}{0.8439}$ t = 21.32...The value of t is 21.3 (3 s.f.) The tractive force is zero.

7

Solution Bank

a P.E. gained by A = mgh $= 2mg \times (s \times \sin \theta)$ $= 2mg \times s \times \frac{3}{5}$ $= \frac{6mgs}{5}$ P.E. lost by B = mgh = 3mgs \therefore P.E. lost by system $= 3mgs - \frac{6mgs}{5} = \frac{9mgs}{5}$

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Solution Bank

7 **b** Consider *A*:

Resolving perpendicular to the slope:

 $R = 2mg\cos\theta$ $= 2mg \times \frac{4}{5}$ $= \frac{8mg}{5}$

Friction is limiting:

$$F = \mu R$$
$$= \frac{1}{4} \times \frac{8mg}{5}$$
$$= \frac{2mg}{5}$$

Work done against friction = Fs

$$=\frac{2mgs}{5}$$

K.E. gained by *A* and $B = \frac{1}{2}(2m)v^2 + \frac{1}{2}(3m)v^2$

$$=\frac{5mv^2}{2}$$

Work-energy principle:

K.E. gained + work done against friction = P.E. lost

$$\frac{5mv^2}{2} + \frac{2mgs}{5} = \frac{9mgs}{5}$$
$$\frac{5mv^2}{2} = \frac{7mgs}{5}$$
$$v^2 = \frac{2 \times 7mgs}{5 \times 5m}$$
$$v^2 = \frac{14gs}{25}$$

Find the frictional force and use the work–energy principle.

Solution Bank

8 a

Resolving parallel to the slope and using F = ma:

$$5g\sin 25^\circ - F = 5a$$

Friction is limiting:

 $F = \mu R$ $F = 0.3 \times 5g \cos 25^{\circ}$ So $5g \sin 25^{\circ} - 5 \times 0.3 \times g \cos 25^{\circ} = 5a$ $a = g(\sin 25^{\circ} - 0.3 \cos 25^{\circ})$

Consider the motion down the slope.

$$u = 0 \text{ and } t = 2$$

$$v = u + at$$

$$= 0 + 2g(\sin 25^\circ - 0.3 \cos 25^\circ)$$

$$= 2g(\sin 25^\circ - 0.3 \cos 25^\circ)$$

$$= 2.9542...$$

After it has been moving for 2 s the parcel has speed 2.95 m s⁻¹ (3 s.f.)

b In 2 s the parcel slides a distance s m down the sloping platform. Loss of P.E. = mgh

$$= mg \times s \sin 25^{\circ}$$

= 5g × s sin 25°
 $u = 0, v = 2.954 \text{ m s}^{-1}, t = 2 \text{ s}$
Using $s = \frac{u + v}{2} \times t$
 $s = \frac{0 + 2.954}{2} \times 2 = 2.954$
So, loss of P.E. = 5g × 2.954 × sin 25°
= 5 × 9.8 × 2.954 × sin 25°
= 61.17...

During the 2 s, the parcel loses 61.2 J of potential energy (3 s.f.)

Solution Bank

9

Power = 4000 W
Power =
$$Tv = 10T$$

So $T = \frac{4000}{10} = 400$ N
Using $F = ma$:
 $T = 2000 \times a$
 $400 = 2000a$
So $a = \frac{400}{2000} = 0.2$ m s⁻²

Resolving parallel to the slope: $T = 200000 + 16000g \sin 12^{\circ}$ $T = 232600.5\cdots$ Work done in 10 s = force x distance moved

 $= 232\ 600...\times(14\times10)$

= 32 564 000 (3 s.f.)

The work done in 10s is 32 600 000 J (or 32 600 kJ) (3 s.f.)

Solution Bank

b The work done by the force is 16.2 J

c Work done =
$$Fs$$

 $16.2 = F \times 4$
 $F = \frac{16.2}{4}$
 $F = 4.05$

The force has magnitude 4.05 N

b Work done against friction = 250 J Work done = Fs $250 = F \times 8$ $F = \frac{250}{8}$

Resolving perpendicular to the slope: R = 5gFriction is limiting: $F = \mu R$

$$\frac{250}{8} = \mu \times 5g$$
$$\mu = \frac{250}{8 \times 5g}$$

The coefficient of friction is 0.638 (3 s.f.)

Solution Bank

13

 $\rightarrow 20 \text{ m s}^{-1} \longrightarrow 0.3 \text{ m s}^{-2}$

$$R \longleftarrow 900 \text{ kg} \longrightarrow T$$

a Power =
$$Fv$$

 $15000 = T \times 20$
 $T = \frac{15000}{20} = 750$
Using $F = ma$:
 $T - R = 900 \times 0.3$
 $750 - R = 270$
 $R = 750 - 270$
 $R = 480$

The magnitude of the resistance is 480 N

b

Resolving along the slope and using F = ma: $T' + 900g \sin 4^\circ - 480 = 900 \times 0.5$

 $T' = 450 + 480 - 900g \sin 4^{\circ}$

Power = Fv $8000 = (450 + 480 - 900g \sin 4^{\circ})v$ $v = \frac{8000}{(450 + 480 - 900g \sin 4^{\circ})}$ v = 25.41...The speed of the car is 25.4 m s⁻¹ (3 s.f.)

Solution Bank

14

Power = FvPower = 4000 W $T = \frac{4000}{v}$ Resolving along the slope and using F = ma: $\frac{4000}{v} - 7000g \sin 10^\circ = 7000 \times 2$ $\frac{4000}{v} = 25912$ So $v = \frac{4000}{25912} = 0.154...$

The speed of the bus is 0.15 m s⁻¹ (2 s.f.)

$$\mu = \frac{3}{8}$$

15

a Resolving perpendicular to the floor: $R+75\sin 15^\circ = 4g$

$$R = 4g - 75\sin 15^\circ$$

Friction is limiting:

$$F = \mu R$$

$$F = \frac{3}{8} \times (4 \times 9.8 - 75 \sin 15^{\circ})$$

$$F = 7.420...$$

The magnitude of the frictional force is 7.42 N (3 s.f.)

b Work done = Fs

= $75 \cos 15^{\circ} \times 6$ = 434.66... The work done is 435 J (3 s.f.)

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

15 c Using the work–energy principle:

K.E. gained = work done by tension – work done against friction

 $\frac{1}{2} \times 4v^2 = 434.66 - 7.420 \times 6$

 $v^2 = \frac{1}{2}(434.66 - 7.420 \times 6)$ v = 13.96...

The block is moving at 14.0 m s⁻¹ (3 s.f.)

16 a $\longrightarrow \nu m s^{-1} \longrightarrow 0 m s^{-2}$

 $600 \text{ N} \longleftarrow 1800 \text{ kg} \longrightarrow T$

At maximum speed, a = 0Resolving along the road and using F = ma:

$$T - 600 = 0$$

$$T = 600$$

Power = Fv
20000 = 600v

$$v = \frac{20000}{600}$$

$$v = 33.33$$

The lorry's maximum speed is 33.3 m s⁻¹ (3 s.f.)

b
$$\longrightarrow 20 \text{ m s}^{-1} \longrightarrow a \text{ m s}^{-2}$$

$$\begin{array}{c} 600 \text{ N} \longleftarrow 1800 \text{ kg} \longrightarrow T \\ \hline Power = Fv \end{array}$$

Solution Bank

17

С

 $\rightarrow 20 \text{ m s}^{-1}$ $\longrightarrow 0 \text{ m s}^{-2}$ 600 N ← 1200 kg $\rightarrow T$ **a** Resolving along the road: T = 600Power = Fv $= 600 \times 20$ $= 12000 \, W$ $=12 \,\mathrm{kW}$ The power is 12 kW b \rightarrow 20 m s⁻¹ \longrightarrow 0.5 m s⁻² 1200 kg 600 N 🗲 $\succ T'$ F = ma $T' - 600 = 1200 \times 0.5$ T' = 600 + 600T' = 1200Power = $F \times v$ $=1200 \times 20$ = 24000The new rate of working is 24 kW v m s 600 N 20° 1200g N Resolving along the slope: $T'' = 600 + 1200g \sin 20^{\circ}$ Power = Fv $50000 = (600 + 1200g\sin 20^\circ)v$ 50000 v = $\overline{(600+1200g\sin 20^\circ)}$ v = 10.82...The value of v is 10.8 (3.s.f.)

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

Challenge

a Car is moving with constant speed in a direction along the tangent to the cylinder. Resolving along the path of the car:

 $T = 3000g\sin\theta$

Power = T_V Power = $3000g\sin\theta \times 20 = 60\,000g\sin\theta = 588000\sin\theta$ W

b When $\theta = 0^{\circ}$, there is no force to act against, so no power is required. When $\theta = 90^{\circ}$, maximum power is needed.