Exercise 4C

1 a P.E. lost =
$$mgh = 0.4 \times 9.8 \times 7$$

= 27.44
The P.E. lost is 27.4 J (3 s.f.)

b K.E. gained
$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

 $=\frac{1}{2} \times 0.4 \times v^2 - 0$
P.E. lost = K.E. gained
 $27.44 = \frac{1}{2} \times 0.4 \times v^2$
 $v^2 = \frac{27.44}{0.2}$
 $v = 11.71...$

The final speed of the particle is 11.7 m s^{-1} (3 s.f.)

2 a K.E. gained
$$= \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}$$
$$= \frac{1}{2} \times 0.5 \times 12^{2} - 0$$
$$= 36$$
The K.E. gained by the stone is 36 J

b P.E. lost = K.E. gained = 36 JThe P.E. lost by the stone is 36 J

c P.E. lost =
$$mgh$$

 $36 = 0.5 \times 9.8 \times h$
 $h = \frac{36}{0.5 \times 9.8}$
 $h = 7.346...$

The height of the tower is 7.35 m (3 s.f.)

3 -2.5 m s⁻¹ -5 m s⁻¹ -10 N -2 -12 mu² = $\frac{1}{2} \times 6 \times 5^2 - \frac{1}{2} \times 6 \times 2.5^2$ = 56.25

The increase in K.E. of the box is 56.3 J (3 s.f.)

b The work done by the force is 56.3 J

3 c
$$F = ma$$

 $10 = 6a$
 $a = \frac{5}{3}$
Substituting into:
 $v^2 = u^2 + 2as$
With $u = 2.5 \text{ m s}^{-1}$, $v = 5 \text{ m s}^{-1}$ and $a = \frac{5}{3} \text{ m s}^{-2}$ gives:
 $5^2 = 2.5^2 + 2\left(\frac{5}{3}\right)s$
 $25 = 6.25 + \frac{10}{3}s$
 $s = 5.625 \text{ m}$
 $s = 5.63 \text{ m (3 s.f.)}$
4 $\longrightarrow 8 \text{ m s}^{-1} R$
 $F \longrightarrow 0.4g \text{ N}$
a K.E. lost $= \frac{1}{2}mu^2 - \frac{1}{2}mv^2$
 $= \frac{1}{2} \times 0.4 \times 8^2 - \frac{1}{2} \times 0.4 \times 4^2$
 $= 9.6$
The K.E. lost by the particle is 9.6 J
b The work done against friction is 9.6 J \bigstar
Mork done = change in energy
c Resolving perpendicular to the surface: $R = 0.4g$
Friction is limiting: $F = \mu R$
 $F = 0.4g \times \mu$
Work done = F_s
 $9.6 = 0.4g \times \mu \times 7$
 $\mu = \frac{9.6}{0.48 \times 8 \times 7} = 0.3498...$

The coefficient of friction is 0.350 (3 s.f.)

- **a** K.E. lost $= \frac{1}{2}mu^{2} \frac{1}{2}mv^{2}$ $= \frac{1}{2} \times 3 \times 6^{2} 0$ = 54The kinetic energy lost by the box is 54 J
- **b** The work done against friction is 54 J

c Resolving perpendicular to the floor:
$$R = 3g$$

Friction is limiting: $F = \mu R$
 $F = 0.4 \times 3g$
Work done $= Fs$
 $54 = 0.4 \times 3g \times s$
 $s = \frac{54}{0.4 \times 3g} = 4.591...$
The distance AB is 4.59 m (3 s.f.)
6 P.E. lost $= mgh$
 $= 0.8 \times 9.8 \times 5$
 $= 39.2$
K.E. gained $= P.E.$ lost
 $= 39.2$
K.E. gained $= \frac{1}{2}mv^2 - \frac{1}{2}mu^2$
 $39.2 = \frac{1}{2} \times 0.8v^2 - 0$
 $v^2 = \frac{39.2 \times 2}{0.8}$
 $v = 9.899...$

The particle hits the ground at a speed of 9.90 m s⁻¹ (3 s.f.)

7 K.E. gained
$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

 $=\frac{1}{2} \times 0.3 \times 20^2 - 0$
 $= 60$
P.E. lost = K.E. gained
 $= 60$
P.E. lost = mgh
 $60 = 0.3 \times 9.8 \times h$
 $h = \frac{60}{0.3 \times 9.8}$
 $h = 20.40...$

The cliff is 20.4 m high (3 s.f.)

8 P.E. gained =
$$mgh$$

= 0.3×9.8×5
K.E. lost = initial K.E. - final K.E.
= $\frac{1}{2} \times mu^2 - 2.1$
= $\frac{1}{2} \times 0.3u^2 - 2.1$
K.E. lost = P.E. gained
 $\frac{1}{2} \times 0.3u^2 - 2.1 = 0.3 \times 9.8 \times 5$
 $u^2 = \frac{0.3 \times 9.8 \times 5 + 2.1}{\frac{1}{2} \times 0.3}$
 $u = 10.58...$
The value of u is 10.6 (3 s.f.)

9

- **a** P.E. lost = mgh= 5×9.8×(2sin 35°) = 56.21... The P.E. lost is 56.2 J (3 s.f.)
- **b** The K.E. gained is 56.2 J

c K.E. gained
$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

 $56.21 = \frac{1}{2} \times 5 \times v^2 - 0$
 $v^2 = \frac{56.21 \times 2}{5}$
 $v = 4.741...$
The final speed of the package is 4.74 m s⁻¹ (3 s.f.)

12 K.E. lost
$$= \frac{1}{2}mu^2 - \frac{1}{2}mv^2$$

 $= \frac{1}{2} \times 0.6u^2 - 0$
P.E. gained $= mgh$
 $= 0.6 \times 9.8 \times (5 \sin 40^\circ)$
K.E. lost $=$ P.E. gained
 $\frac{1}{2} \times 0.6u^2 = 0.6 \times 9.8 \times 5 \sin 40^\circ$
 $u^2 = \frac{0.6 \times 9.8 \times 5 \sin 40^\circ}{\frac{1}{2} \times 0.6}$
 $u = 7.936...$
The speed of projection is 7.94 m s⁻¹ (3 s.f.)

K.E. lost
$$= \frac{1}{2}mu^{2} - \frac{1}{2}mv^{2}$$
$$= \frac{1}{2} \times 2 \times 6^{2} - 0$$
$$= 36$$
P.E. gained = mgh
$$= 2 \times 9.8 \times (x \sin 30^{\circ})$$
$$= 9.8x$$

Resolving perpendicular to the plane: $R = 2g \cos 30^{\circ}$ Friction is limiting: $F = \mu R$

$$F = \frac{1}{3} \times 2g \cos 30^\circ = \frac{2}{3}g \cos 30^\circ$$

Work done against friction = $Fx = \frac{2}{3}gx \cos 30^\circ$

K.E. lost = P.E. gained + work done against friction 2

$$\Rightarrow 36 = 9.8x + \frac{2}{3}gx\cos 30^{\circ}$$
$$36 = 9.8x \left(1 + \frac{2}{3}\cos 30^{\circ}\right)$$
$$x = \frac{36}{9.8\left(1 + \frac{2}{3}\cos 30^{\circ}\right)} = 2.328...$$

The particle moves 2.33 m up the plane (3 s.f.)

a Work done by resistive forces on the skier = change in total energy of the skier Loss in P.E. = *mgh*

Increase in K.E. = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$ Total loss of energy = P.E. lost – K.E. gained = $mgh + \frac{1}{2}mu^2 - \frac{1}{2}mv^2$ Force × distance = $mgh + \frac{1}{2}mu^2 - \frac{1}{2}mv^2$ $50R = (80 \times 9.8 \times 50 \sin 30^\circ) + (\frac{1}{2} \times 80 \times 3^2) - (\frac{1}{2} \times 80 \times 12^2)$ $50R = 14\ 200$ R = 284The value of R is 284.

b The resistive force may not be constant, and could depend on speed, for example.

The value of R is 128 (3 s.f.)

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Loss of P.E. =
$$mgh$$

= $40 \times 9.8 \times (x \sin 25^\circ - 25 \sin 6^\circ)$
Change in K.E. = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$
= $0 - 0$
Work done against resistance = Fs
= $18 \times (x + 15 + 25)$
= $18 \times (x + 40)$
Work done against resistance = loss of P.E.
 $18x + 18 \times 40 = 40 \times 9.8 \times x \sin 25^\circ - 40 \times 9.8 \times 25 \sin 6^\circ$
($40 \times 9.8 \sin 25^\circ - 18$) $x = 18 \times 40 + 40 \times 9.8 \times 25 \sin 6^\circ$
 $x = \frac{18 \times 40 + 40 \times 9.8 \times 25 \sin 6^\circ}{40 \times 9.8 \sin 25^\circ - 18}$
 $x = 11.81...$
The girl travels 11.8 m down the slope.

Challenge

Let the mass of a hydrogen molecule = mSo the mass of an oxygen molecule = 8m

Consider the average kinetic energy of the oxygen molecules: $\frac{1}{2}mv^2 = \frac{1}{2} \times 8m \times 400^2 = \frac{3}{2}kT$

Consider the average kinetic energy of the hydrogen molecules: Average K.E. $=\frac{3}{2}kT = \frac{1}{2} \times 8m \times 400^2 = \frac{1}{2}mv^2$ So $\frac{1}{2} \times 8m \times 400^2 = \frac{1}{2}mv^2$ $8 \times 400^2 = v^2$ $v = \sqrt{1280\ 000}$ = 1131.3...The average speed of the hydrogen molecules is 1130 m s⁻¹

Consider energy changes from start to end – do not divide the motion into three parts.