Mechanics 2

Solution Bank

Exercise 4B

1 a Kinetic energy
$$=\frac{1}{2}mv^2 = \frac{1}{2} \times 0.3 \times 15^2 = 33.8 \text{ J} (3 \text{ s.f.})$$

- **b** Kinetic energy $=\frac{1}{2}mv^2 = \frac{1}{2} \times 3 \times 2^2 = 6$ J
- **c** Kinetic energy $=\frac{1}{2}mv^2 = \frac{1}{2} \times 0.1 \times 100^2 = 500 \text{ J}$
- **d** Kinetic energy $=\frac{1}{2}mv^2 = \frac{1}{2} \times 25 \times 4^2 = 200 \text{ J}$
- e Kinetic energy $=\frac{1}{2}mv^2 = \frac{1}{2} \times 800 \times 20^2 = 160\ 000\ \text{J}$

In order, from the most kinetic energy to the least, will be e, c, d, a, b

- **2** a Gain of P.E. = $mgh = 1.5 \times 9.8 \times 3 = 44.1 \text{ J}$
 - **b** Gain of P.E. = $mgh = 55 \times 9.8 \times 15 = 8085$ J
 - **c** Loss of P.E. = $mgh = 75 \times 9.8 \times 30 = 22050$ J
 - **d** Loss of P.E. = $mgh = 580 \times 9.8 \times 6 = 34104 \text{ J}$

3 Decrease in K.E. =
$$\frac{1}{2}mu^2 - \frac{1}{2}mv^2$$

= $\frac{1}{2} \times 1.2 \times 12^2 - \frac{1}{2} \times 1.2 \times 4^2$
= 76.8

The decrease in the particle's K.E. is 76.8 J

4 Increase in K.E. = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$ = $\frac{1}{2} \times 900 \times 20^2 - \frac{1}{2} \times 900 \times 5^2$ = 168 750

The increase in the van's K.E. is 168 750 J

5 Increase in K.E.
$$=\frac{1}{2}mv^2 - \frac{1}{2}mu^2$$

 $6 = \frac{1}{2} \times 0.2 \times v^2 - \frac{1}{2} \times 0.2 \times 2^2$
 $6 = 0.1v^2 - 0.4$
 $v^2 = \frac{6.4}{0.1} = 64$
 $v = 8$ ($v > 0$)
Speed is positive.

The value of v is 8.

Mechanics 2

Solution Bank

The skater's final speed is 4.53 m s⁻¹ (3 s.f.)

P.E. lost = mgh= $25 \times 9.8 \times (4 \sin 48^\circ)$ = 728.2...The P.E. lost by the child is 728 J (3 s.f.)

Vertical distance moved is 4 sin 48°.

b You have assumed there to be no air resistance. This would be valid for low speeds, but not for high speeds.

8 a
$$s = 2$$
 m, $a = 9.8$ m s⁻², $u = 0$, $v = ?$
 $v^2 = u^2 + 2as$
 $v^2 = 0 + 2 \times 9.8 \times 2$
 $v^2 = 39.2$
K.E. $= \frac{1}{2}mv^2 = \frac{1}{2} \times 0.6 \times 39.2$
 $= 11.76$

The K.E. of the ball as it hits the surface of the water is 11.8 J (3 s.f.)

b K.E. lost
$$=\frac{1}{2}mu^2 - \frac{1}{2}mv^2$$

 $= 11.76 - \frac{1}{2} \times 0.6 \times 4.8^2$
 $= 4.848$
The K.E. lost by the ball is 4.85 J (3 s.f.)

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

Challenge

- **a** The ball is dropped from the top of a cliff, and falls freely under gravity. Use the equation v = u + atUsing u = 0 and a = g, you have v = gtK.E. $= \frac{1}{2}mv^2 = \frac{1}{2} \times 1 \times (gt)^2 = \frac{g^2t^2}{2} = 48.0t^2$ $s = ut + \frac{1}{2}at^2$. So using s = h, u = 0 and a = g, you have $h = \frac{1}{2}gt^2$ P.E. $= -mgh = -1 \times g \times (\frac{1}{2}gt^2) = -\frac{g^2t^2}{2} = -48.0t^2$
- **b** Kinetic energy + potential energy $=\frac{g^2t^2}{2} + \left(-\frac{g^2t^2}{2}\right) = 0$

So kinetic energy + potential energy is constant.