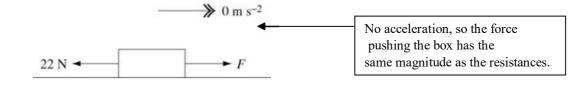
Solution Bank

Exercise 4A

1 Work done = Fs= 0.6×4.2 = 2.52The work done is 2.52 J

2 Work done = Fs102 = $F \times 12$


$$F = \frac{102}{12} = 8.5$$

The magnitude of the force is 8.5 N

- 3 Work done against gravity = mgh= $0.35 \times 9.8 \times 7$ = 24.01 The work done against gravity is 24.0 J (3 s.f.)
- 4 Work done against gravity = mgh= $15 \times 9.8 \times 4$

The work done against gravity is 588 J

5

 $F = 22 \, \text{N}$

Work done = Fs

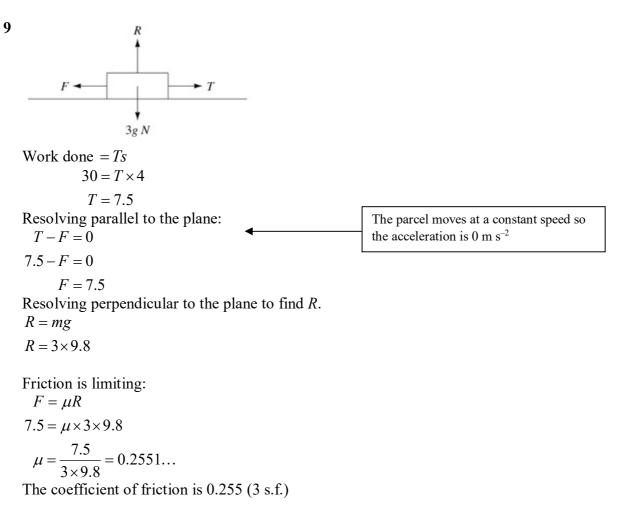
$$= 22 \times 15$$

The work done by the force pushing the box is 330 J

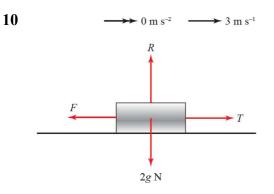
6 Work done by gravity = mgh

$$= 0.5 \times 9.8 \times 15$$

= 73.5The work done by gravity is 73.5 J

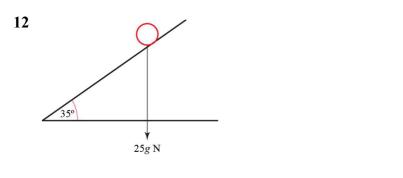

Solution Bank

7 Work done = mgh $30 \times 1000 = 80 \times 9.8 h$ $h = \frac{30000}{80 \times 9.8}$ h = 38.26...The building is 38.3 m high (3 s.f.) 8 a 1 kJ = 1000 J 1 kJ = 1


> Work done = horizontal component of force × distance moved = $18 \cos 25^{\circ} \times 14$ = 228.38...The work done is 228 J (3 s.f.)

b One assumption made is that there is no frictional force between the sled and the ice. This is likely to be a valid assumption, due to the low coefficient of friction between sled and ice.

Solution Bank



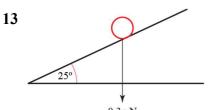
 $\mu = 0.55$

Resolving perpendicular to the plane: R = 2gFriction is limiting: $F = \mu R$ $F = 0.55 \times 2g$ Resolving parallel to the plane: T - F = 0 $T = 0.55 \times 2g$ Work done = Ts $= 0.55 \times 2g \times (3 \times 2)$ $= 0.55 \times 2 \times 9.8 \times 6$ = 64.68The work done is 64.7 J (3 s.f.)

11 Work done against gravity =
$$mgh$$

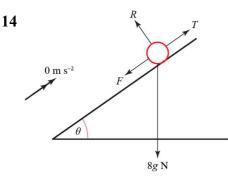
= $52 \times 9.8 \times 46$

The work done against gravity is 23 400 J (3 s.f.)



Work done by gravity = mgh= $25 \times 9.8 \times (2 \sin 35^\circ)$ = 281.0...The work done by gravity is 281 J (3 s.f.) **INTERNATIONAL A LEVEL**

Mechanics 2


Solution Bank

0.3g NWork done against gravity = mgh = $0.3 \times 9.8 \times (2 \sin 25^\circ)$ = 2.484...

The work done against gravity is 2.48 J (3 s.f.)

$$\mu = 0.3$$

a Resolving perpendicular to the plane: $R = 8g \cos \alpha$

$$= 8g \times \frac{12}{13}$$

Friction is limiting:
 $F = \mu R$

$$F = 0.3 \times 8 \times 9.8 \times \frac{12}{13}$$
$$= 21.71$$

13 5 10 12

Draw a small right-angled triangle to show information about α . Use exact values for sin α and cos α .

The frictional force has magnitude 21.7 N (3 s.f.)

b Work done against friction = Fs

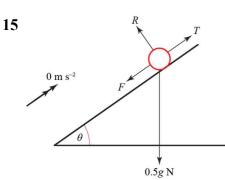
$$= 21.71... \times 15$$
$$= 325.6...$$
The work done against friction is 326 J (3 s.f.)

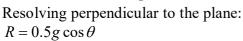
c Work done against gravity = *mgh*

$$= 8 \times 9.8 \times (15 \sin \alpha)$$
$$= 8 \times 9.8 \times \left(15 \times \frac{5}{13}\right)$$
$$= 452.3...$$

The work done against gravity is 452 J (3 s.f.)

Solution Bank




25

24

TO

7

$$= 0.5g \times \frac{24}{25}$$

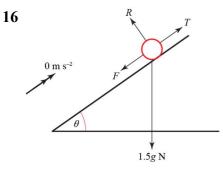
Resolving parallel to the plane: $T = F + 0.5g \sin \theta$ Friction is limiting: $F = \mu R$

$$F = \mu \times 0.5g \times \frac{24}{25}$$

 $T = \mu \times 0.5g \times \frac{24}{25} + 0.5g \times \frac{7}{25}$ Work done by force = force × distance moved $12 = T \times 3$

$$T = 4$$

$$\therefore 4 = \mu \times 0.5g \times \frac{24}{25} + 0.5g \times \frac{7}{25}$$


$$\mu = \frac{4 - 0.5 \times 9.8 \times \frac{7}{25}}{0.5 \times 9.8 \times \frac{24}{25}}$$

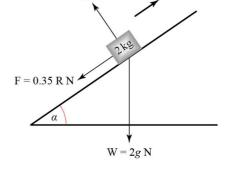
$$\mu = 0.5586...$$

The coefficient of friction is 0.559 (3 s.f.)

Solution Bank

 $\mu = 0.4$

Resolving perpendicular to the plane: $R = 1.5g \cos 40^{\circ}$ Friction is limiting: $F = \mu R$ $F = 0.4 \times 1.5g \cos 40^{\circ}$ Resolving parallel to the plane: $T = F + 1.5g \sin 40^{\circ}$ $T = 0.4 \times 1.5g \cos 40^{\circ} + 1.5g \sin 40^{\circ}$ Work done by $T = T \times s$ $= (0.4 \times 1.5g \cos 40^{\circ} + 1.5g \sin 40^{\circ}) \times 8$ = 111.6...The work done by T is 112 J (3 s.f.)


 $17 \sin \alpha = \frac{3}{5} \Longrightarrow \cos \alpha = \frac{4}{5}$

Work done = force × distance moved in direction of force **a** Work done by gravity $E_g = Wh$

Weight, W = mg = 2g, $h = 3\sin\alpha = \frac{9}{5}$ m

 $E_g = 2g \times \frac{9}{5}$ $E_g = 2 \times 9.8 \times 1.8 = 35.28$

The work done by gravity is 35.3 J (3 s.f.)

v ms⁻¹

RN

b Work done by friction $E_F = Fs$, s = 3 m

Normal reaction force, *R*, can be found by resolving perpendicular to the slope: $R = 2g \cos \alpha$

$$R = \frac{8}{5}g$$

So frictional force, $F = \frac{7}{20} \times \frac{8}{5}g = \frac{14}{25}g$

$$E_F = \frac{14}{25}g \times 3$$

 $E_F = 0.56 \times 9.8 \times 3 = 16.464$ The work done by gravity is 16.5 J (3 s.f.)

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

17 c Work done against these forces = kinetic energy lost Since kinetic energy = $\frac{1}{2}mv^2$, so here: $35.28 + 16.464 = (\frac{1}{2} \times 2u^2) - (\frac{1}{2} \times 2 \times 0^2)$ $51.744 = u^2$ u = 7.1933...

The particle is projected at a speed of 7.19 m s^{-1} (3 s.f.)