Mechanics 2

Solution Bank

Exercise 2F

- 1 $v = \int a dt$ = at + c, where c is a constant of integration.
 - When t = 0, v = 0 $0 = a \times 0 + c \Rightarrow c = 0$ v = at $s = \int v dt$ $= \int at dt$ $= \frac{1}{2}at^2 + k$, where k is a constant of integration.
 - When t = 0, s = x $x = \frac{1}{2} \times a \times 0^2 + k \Rightarrow k = x$ $s = \frac{1}{2}at^2 + x$
- 2 a $v = \int a dt$ = $\int 5 dt$ = 5t + c, where c is a constant of integration.
 - When t = 0, v = 12 $12 = 0 + c \Rightarrow c = 12$ v = 12 + 5t
 - **b** $s = \int v dt$ = $\int (12+5t) dt$ = $12t + \frac{5}{2}t^2 + k$, where k is a constant of integration.
 - When t = 0, s = 7 $7 = 0 + 0 + k \Rightarrow k = 7$ $s = 12t + \frac{5}{2}at^2 + 7$ $= 12t + 2.5t^2 + 7$
- 3 $s = ut + \frac{1}{2}at^2$ $v = \frac{ds}{dt} = u + at$ $a = \frac{dv}{dt} = a$

So acceleration is constant.

Mechanics 2

Solution Bank

4 A: $s = 2t^2 - t^3$ $v = \frac{ds}{dt} = 4t - 3t^2$ $a = \frac{dv}{dt} = 4 - 6t$ Not constant

$$\mathbf{B}: s = 4t + 7$$
$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = 4$$
$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 0$$

No acceleration (i.e. constant acceleration of zero)

C:
$$s = \frac{t^2}{4}$$

 $v = \frac{ds}{dt} = \frac{t}{2}$
 $a = \frac{dv}{dt} = \frac{1}{2}$

Constant acceleration

D:
$$s = 3t - \frac{2}{t^2}$$

 $v = \frac{ds}{dt} = 3 + \frac{4}{t^3}$
 $a = \frac{dv}{dt} = -\frac{12}{t^4}$

Not constant

$$\mathbf{E}: s = 6$$
$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = 0$$

Particle stationary (i.e. constant acceleration of zero)

5 a
$$v = u + at$$

 $u = 5, v = 13, t = 2$
 $13 = 5 + 2a$
 $a = \frac{13-5}{2} = 4$

The acceleration of the particle is 4 m s^{-2} .

Mechanics 2

Solution Bank

5 b $v = \int a dt$ $= \int 4 dt$ = 4t + c, where c is a constant of integration. When t = 0, v = 5 $5 = 0 + c \Rightarrow c = 5$ v = 4t + 5 $s = \int v dt$

 $= \int (4t+5) dt$ = $2t^2 + 5t + k$, where k is a constant of integration.

When t = 0, s = 0 $0 = 0 + 0 + k \Rightarrow k = 0$ $s = 2t^2 + 5t$

This is an equation of the required form with p = 2, q = 5 and r = 0.

6 a $s = 25t - 0.2t^2$ When t = 40, $s = 25 \times 40 - 0.2 \times 40^2$ = 680

The distance AB is 680 m.

b
$$v = \frac{ds}{dt} = 25 - 0.4t$$

 $a = \frac{dv}{dt} = -0.4$

The train has a constant acceleration (of -0.4 m s^{-2}).

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

6 c Taking the direction in which the train travels to be positive: For the bird: a = -0.6, u = -7, initial displacement = 680

 $v_B = \int a dt$ = $\int -0.6 dt$ = -0.6t + c, where c is a constant of integration.

When t = 0, $v_B = -7$ $-7 = 0 + c \Rightarrow c = -7$ v = -0.6t - 7 $s_B = \int v_B dt$ $= \int (-0.6t - 7) dt$ $= -0.3t^2 - 7t + k$, where k is a constant of integration.

When t = 0, $s_B = 680$ $680 = 0 - 0 + k \Rightarrow k = 680$ $s_B = -0.3t^2 - 7t + 680$

When the bird is directly above the train, the displacement of both train and bird are the same.

 $25t - 0.2t^{2} = -0.3t^{2} - 7t + 680$ $0.1t^{2} + 32t - 680 = 0$ $t^{2} + 320t - 6800 = 0$ (t - 20)(t + 340) = 0 t > 0, so t = 20When t = 20, $s = 25 \times 20 - 0.2 \times 20^{2}$ = 420

The bird is directly above the train 420 m from A.