Solution Bank

Exercise 2B

When $t = 3$, $v = 6 \times 9 - 8 = 46$ The velocity of the particle when $t = 3$ is 46 m s⁻¹.

Solution Bank

2 b $a =$ d d *v t* $= 12t$ When $t = 2$, $a = 12 \times 2 = 24$ The acceleration of the particle when $t = 2$ is 24 m s⁻².

3 *P* is at rest when $v = 0$.

 $12 - t - t^2 = 0$ $(4 + t)(3 - t) = 0$ $t = -4$ or $t = 3$ $t \ge 0$, so $t = 3$ $a =$ d d *v t* $=-1-2t$

When $t = 3$, $a = -1 - 2 \times 3 = -7$

The acceleration of *P* when *P* is instantaneously at rest is -7 m s^{-2} , or 7 m s^{-2} in the direction of *x* decreasing.

4
$$
x = 4t^3 - 39t^2 + 120t
$$

\n $v = \frac{dx}{dt} = 12t^2 - 78t + 120$

P is at rest when $v = 0$. $12t^2 - 78t + 120 = 0$ $2t^2 - 13t + 20 = 0$ $(2t-5)(t-4)=0$

P is at rest when *t* = 2.5 and *t* = 4.

When $t = 2.5$, $x = 4(2.5)^3 - 39(2.5)^2 + 120(2.5) = 118.75$

When $t = 4$, $x = 4(4)^3 - 39(4)^2 + 120(4) = 112$

The distance between the two points where *P* is instantaneously at rest is $118.75 - 112 = 6.75$ m.

5 $v = kt - 3t^2$

$$
a \quad a = \frac{\mathrm{d}v}{\mathrm{d}t} = k - 6t
$$

When $t = 0$, $a = 4$ $k - 6 \times 0 = 4$ $k = 4$

Solution Bank

5 b *P* is at rest when $v = 0$. $4t - 3t^2 = 0$ $t(4-3t) = 0$ *P* is at rest when $t = 0$ and $t = \frac{4}{3}$.

> When $t = \frac{4}{3}$, $a = 4 - 6 \times \frac{4}{3} = 4 - 8 = -4$ When *P* is next at rest, the acceleration is -4 m s^{-2} .

6 s =
$$
\frac{1}{4}(4t^3 - 15t^2 + 12t + 30)
$$

\n $v = \frac{ds}{dt} = \frac{1}{4}(12t^2 - 30t + 12)$
\nThe print head is at rest when $v = 0$.
\n $\frac{1}{4}(12t^2 - 30t + 12) = 0$
\n $12t^2 - 30t + 12 = 0$
\n $2t^2 - 5t + 2 = 0$
\n $(2t - 1)(t - 2) = 0$

The print head is at rest when $t = 0.5$ and $t = 2$.

When
$$
t = 0.5
$$
,
\n
$$
s = \frac{1}{4} (4(0.5)^3 - 15(0.5)^2 + 12(0.5) + 30)
$$
\n
$$
= \frac{1}{4} (0.5 - 3.75 + 6 + 30)
$$
\n
$$
= 8.1875
$$

When
$$
t = 2
$$
,
\n
$$
s = \frac{1}{4} (4(2)^3 - 15(2)^2 + 12(2) + 30)
$$
\n
$$
= \frac{1}{4} (32 - 60 + 24 + 30)
$$
\n
$$
= 6.5
$$

Distance between these two points = $8.1875 - 6.5$ $= 1.6875$ cm $= 1.7$ cm $(1 d.p.)$

The distance between the points when the print head is instantaneously at rest is 1.7 cm.

7 **a**
$$
s = 0.4t^3 - 0.3t^2 - 1.8t + 5
$$

\n $v = \frac{ds}{dt} = 1.2t^2 - 0.6t - 1.8$
\n $\frac{dv}{dt} = 2.4t - 0.6$
\n $\frac{dv}{dt} = 0$ when $2.4t = 0.6$
\n $t = 0.25$

P is moving with minimum velocity at $t = 0.25$ s.

Solution Bank

7 b When $t = 0.25$ $s = 0.4(0.25)^3 - 0.3(0.25)^2 - 1.8(0.25) + 5$ $= 4.54$ (3 s.f.)

When *P* is moving with minimum velocity, the displacement is 4.54 m.

$$
\mathbf{c} \quad v = \frac{\mathrm{d}s}{\mathrm{d}t} = 1.2t^2 - 0.6t - 1.8
$$
\n
$$
\text{When } t = 0.25, v = 1.2 \times 0.25^2 - 0.6 \times 0.25 - 1.8
$$
\n
$$
= -1.88 \text{ (3 s.f.)}
$$

- **8 a** $s = 4t^3 t^4$ When $t = 4$, $s = 4(4)^3 - 4^4 = 0$ The body returns to its starting position 4 s after leaving it.
	- **b** $s = 4t^3 t^4 = s = t^3(4-t)$ Since $t \geq 0$, t^3 is always positive. Since $t \leq 4$, $(4 - t)$ is always positive. So for $0 \le t \le 4$, *s* is always non-negative.

$$
\frac{ds}{dt} = 12t^2 - 4t^3
$$

$$
\frac{ds}{dt} = 0 \text{ when}
$$

$$
12t^2 - 4t^3 = 0
$$

$$
4t^2(3 - t) = 0
$$

$$
t = 0 \text{ or } 3
$$

At $t = 0$, the body is at $s = 0$, so maximum displacement occurs when $t = 3$.

When $t = 3$, using factorised form of the equation of motion: $s = 3³(4-3) = 27$ The maximum displacement of the body from its starting point is 27 m.

Solution Bank

9 a $v = t^2(6-t)^2$

Velocity is zero when $t = 0$ and $t = 6$. The graph touches the time axis at $t = 0$ and $t = 6$. Graph only shown for $t \geq 0$, as this is the range over which equation is valid.

$$
\frac{\mathrm{d}v}{\mathrm{d}t} = 72t - 36t^2 + 4t^3
$$

$$
\frac{dv}{dt} = 0 \text{ when} 72t - 36t^2 + 4t^3 = 0 4t(18 - 9t + t^2) = 0 4t(3 - t)(6 - t) = 0
$$

The turning points are at $t = 0$, $t = 3$ and $t = 6$. $v = 0$ when $t = 0$ and $t = 6$, therefore the maximum velocity occurs when $t = 3$.

When $t = 3$, $v = 3^2(6-3)^2 = 9 \times 9 = 81$

The maximum velocity is 81 m s[−]¹ and the body reaches this 3 s after leaving *O*.

10 a
$$
v = 2t^2 - 3t + 5
$$

For this particle to come to rest, *v* must be 0 for some positive value of *t*.

$$
2t2-3t+5=0
$$
 must have real, positive roots.

$$
b2-4ac=(-3)2-4(2)(5)
$$

$$
=9-40
$$

$$
=-31<0
$$

The equation therefore has no real roots, so *v* is never zero.

Solution Bank

10 b $v = 2t^2 - 3t + 5$ d d *v t* $= 4t - 3$ d d *v t* $= 0$ when $4t = 3$ $t = 0.75$

> Minimum velocity is when $t = 0.75$. When $t = 0.75$, $v = 2(0.75)^2 - 3(0.75) + 5$ $= 1.125 - 2.25 + 5$ $= 3.875$ $= 3.88$ (3 s.f.) The minimum velocity of the particle is 3.88 m s^{-1} .

11 a
$$
s = \frac{9t^2}{2} - t^3
$$

= $t^2(4.5 - t)$

Displacement is zero when $t = 0$ and $t = 4.5$. The graph touches the time axis at $t = 0$ and crosses it at $t = 4.5$.

Graph only shown for $0 \le t \le 4.5$, as this is range over which equation is valid. The curve is cubic, so not symmetrical.

b For values of $t > 4.5$, *s* is negative. However *s* is a distance and can only be positive. Therefore, we must have the restriction $0 \le t \le 4.5$ for the model to be valid.

Solution Bank

11 c
$$
s = \frac{9t^2}{2} - t^3
$$

$$
\frac{ds}{dt} = 9t - 3t^2
$$

$$
\frac{ds}{dt} = 0 \text{ when}
$$

$$
9t - 3t^2 = 0
$$

$$
3t(3 - t) = 0
$$

The turning points are at $t = 0$ and $t = 3$. $s = 0$ when $t = 0$, so maximum distance occurs when $t = 3$.

When *t* =3, using factorised form of the equation of motion: $s = 3^2(4.5 - 3) = 9 \times 1.5 = 13.5$

The maximum distance of *P* from *O* is 13.5 m.

d
$$
v = \frac{ds}{dt} = 9t - 3t^2
$$

\n $a = \frac{dv}{dt} = 9 - 6t$
\nWhen $t = 3$,
\n $a = 9 - 6 \times 3 = -9$
\nThe magnitude of the acceleration of *P* at the maximum distance is 9 m s⁻².

Solution Bank

12 $s = 3.6t + 1.76t^2 - 0.02t^3$ d d *s* $\frac{t}{t}$ = 3.6 + 3.52*t* – 0.06*t*² Maximum distance occurs when d d *s* $\frac{1}{t} = 0.$ d d *s* $\frac{1}{t} = 0$ when $3.6 + 3.52t - 0.06t^2 = 0$ $3t^2 - 176t - 180 = 0$ $176 \pm \sqrt{(-176)^2 + (4)(3)(180)}$ $2^2 - 4$ 2 $=\frac{176\pm\sqrt{(-176)^2+1}}{2\times3}$ $176 \pm \sqrt{33136}$ 6 $=-1.005$ or 59.67 $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ *a* $=\frac{-b\pm\sqrt{b^2-1}}{2}$ $=\frac{176\pm}{1}$ $t > 0$, so maximum distance occurs when $t = 59.67$. When $t = 59.67$, $s = 3.6(59.67) + 1.76(59.67)^{2} - 0.02(59.67)^{3}$

$$
= 2230 (3 s.f.)
$$

The maximum distance from the start of the track is 2230 m or 2.23 km. Since this is less than 4 km, the train never reaches the end of the track.

13 **a**
$$
s = 3t^{\frac{2}{3}} + 2e^{-3t}, t \ge 0
$$

\n $v = \frac{ds}{dt} = 2t^{-\frac{1}{3}} - 6e^{-3t}$
\nWhen $t = 0.5$
\n $v = 2(0.5)^{-\frac{1}{3}} - 6e^{-3(0.5)}$
\n $= 1.81 \text{ m s}^{-1} (3 \text{ s.f.})$
\n**b** $v = 2t^{-\frac{1}{3}} - 6e^{-3t}$
\n $a = \frac{dv}{dt} = \frac{2}{3}t^{-\frac{4}{3}} + 18e^{-3t}$
\nWhen $t = 3$
\n $a = -\frac{2}{3}(3)^{-\frac{4}{3}} + 18e^{-3(3)}$
\n $= -0.1518...$
\n $= -0.152 \text{ m s}^{-2} (3 \text{ s.f.})$
\n**c** $F = ma$
\n $= 5(-0.1518...)$
\n $= -0.7592...$
\n $= -0.759 \text{ N} (3 \text{ s.f.})$

Solution Bank

14 a When $t = 4$, $s = \frac{1}{2}$ 2 $s = \frac{1}{2}t$ $ds = 1$ $dt = 2$ *s t* = Therefore: $v = 0.5$ m s⁻¹ **b** When $t = 22$, $s = \sqrt{t+3}$ $(t + 3)$ $s = (t+3)^{\frac{1}{2}}$ $(t+3)^{-\frac{1}{2}}$ $\frac{ds}{dt} = \frac{1}{2}(t+3)^{-\frac{1}{2}}$ $dt = 2$ $\frac{s}{t} = \frac{1}{2} (t$ *t* $=\frac{1}{2}(t+3)^{-}$ $((22) + 3)$ 1 $\frac{1}{2}((22)+3)^{-\frac{1}{2}}$ $= 0.1 \text{ m s}^{-1}$ 2 $v = \frac{1}{2}((22) + 3)^{-1}$ **15 a** When $t = 2$, $s = 3^t + 3t$ $\frac{ds}{dt} = 3^t \ln 3 + 3$ d $\frac{S}{t} = 2^t$ *t* $= 3^t \ln 3 +$ $v = 3^2 \ln 3 + 3$ $=$ 12.9 m s⁻¹ (3 s.f.) $=12.887...$ **b** When $t = 10$, $s = -252 + 96t - 6t^2$ $\frac{ds}{dt} = 96 - 12$ d $\frac{s}{t} = 96 - 12t$ *t* $= 96$ $v = 96 - 12(10)$ $=-24 \text{ m s}^{-1}$ (3 s.f.) **c** For $0 \le t \le 3$: $s = 3^t + 3t$ The maximum displacement occurs at *t* = 3 $s = 3^3 + 3(3)$ $=$ 36 m For $3 \le t \le 6$: $s = 24t - 36$ The maximum displacement occurs at $t = 6$ $s = 24(6) - 36$ $=108$ m For $t > 6$: $s = -252 + 96t - 6t^2$ The maximum displacement occurs when: $\frac{ds}{dt} = 96 - 12t = 0$ d $t = 8$ $\frac{s}{t} = 96 - 12t$ *t* $=96-12t=$ Substituting $t = 8$ into $s = -252 + 96t - 6t^2$ gives: $s = -252 + 96(8) - 6(8)^2$ $=132$ m Therefore 132 m from *O*.

Solution Bank

15 d For $0 \le t \le 3$: $s = 3^t + 3t$ $\frac{ds}{dt} = 3^t \ln 3 + 3$ d $v = \frac{ds}{dt} = 3^t$ *t* $=\frac{dS}{dt} = 3^t \ln 3 +$ When $v = 18$ m s⁻¹ $3^t \ln 3 + 3 = 18$ $3^{t} = \frac{15}{10}$ ln 3 $\ln 3 = \ln \left(\frac{15}{10} \right)$ ln 3 *t* = $t \ln 3 = \ln \left(\frac{15}{\ln 3} \right)$ $\ln\left(\frac{15}{1}\right)$ ln 3 ln 3 $= 2.379...$ $t = \frac{\ln\left(\frac{15}{\ln 3}\right)}{1/3}$ Substituting $t = 2.379...$ into $s = 3^t + 3t$ gives: $s = 20.791...$ $= 20.8$ m (3 s.f.) For $3 \le t \le 6$: $s = 24t - 36$ $\frac{ds}{1} = 24$ d $v = \frac{ds}{dt} =$ So the particle is moving with a constant velocity of 24 m s^{-1} in this interval. For $t > 6$: $s = -252 + 96t - 6t^2$ $\frac{ds}{dt} = 96 - 12$ d $v = \frac{ds}{dt} = 96 - 12t$ When $v = 18$ m s⁻¹ $96 - 12t = 18$ $t = 6.5$ Substituting $t = 6.5$ into $s = -252 + 96t - 6t^2$ gives: $s = -252 + 96(6.5) - 6(6.5)^2$ $=118.5 \text{ m}$ Therefore when the particle is moving at 18 m s^{-1} , $s = 20.8 \text{ m or } s = 118.5 \text{ m}$ **16 a** Since the runner completes the race in 25 s, $T = 25$ s $s = k\sqrt{t}$, $0 \le t \le 25$

Substituting $s = 200$ and $t = 25$ into $s = k\sqrt{t}$ gives: $200 = k\sqrt{25}$ $k = 40$

Solution Bank

16 b
$$
s = 40\sqrt{t} \Rightarrow s = 40t^{\frac{1}{2}}
$$

\n $v = \frac{ds}{dt} = 20t^{-\frac{1}{2}}$
\nSubstituting $t = 25$ into $v = 20t^{-\frac{1}{2}}$ gives:
\n $v = 20(25)^{\frac{1}{2}}$
\n $= 4 \text{ m s}^{-1}$
\nc $v = 20t^{-\frac{1}{2}} \Rightarrow v = \frac{20}{\sqrt{t}}$

Therefore for small values of *t*, *v* is much too large. e.g. when $t = 0.01$ s, $v = 200$ m s⁻¹

17 a
$$
v = 2 + 8\sin kt, t \ge 0
$$

 $\frac{dv}{dt} = 8k \cos$ d $a = \frac{dv}{dt} = 8k \cos kt$ Substituting $a = 4$ and $t = 0$ into $a = 8k \cos kt$ gives: $8k \cos k(0) = 4$ $8k = 4$ $k = 0.5$

b
$$
a = 0
$$
 when:
\n $a = 4 \cos \left(\frac{1}{2}t\right) = 0$
\n $\cos \left(\frac{1}{2}t\right) = 0$
\n $\frac{1}{2}t = \frac{\pi}{2} + k\pi$
\n $t = \pi + 2k\pi$
\nIn the interval $0 \le t \le 4\pi$
\n $t = \pi$ or $t = 3\pi$
\n**c** $v = 2 + 8 \sin \frac{t}{2} \Rightarrow \sin \frac{t}{2} = \frac{v - 2}{8} \Rightarrow \sin^2 \frac{t}{2} = \left(\frac{v - 2}{8}\right)^2$ (1)
\n $a = 4 \cos \left(\frac{1}{2}t\right) \Rightarrow a^2 = 16 \cos^2 \left(\frac{1}{2}t\right) \Rightarrow \cos^2 \left(\frac{1}{2}t\right) = \frac{a^2}{16}$ (2)
\nSubstituting (1) and (2) into $\sin^2 \theta + \cos^2 \theta = 1$ gives:
\n $\left(\frac{v - 2}{8}\right)^2 + \frac{a^2}{16} = 1$
\n $(v - 2)^2 + 4a^2 = 64$
\n $4a^2 = 64 - (v - 2)^2$ as required

Solution Bank

17 d
$$
v = 2 + 8\sin\left(\frac{1}{2}t\right)
$$

$$
\frac{dv}{dt} = 4\cos\left(\frac{1}{2}t\right)
$$

Maximum velocity occurs when $\frac{dv}{dt} = 0$ d *v t* $= 0$, therefore: From part **b** this occurs when $t = \pi$ or $t = 3\pi$ Substituting $t = \pi$ into $v = 2 + 8 \sin \left(\frac{1}{2} \right)$ $v = 2 + 8\sin\left(\frac{1}{2}t\right)$ gives: $2+8\sin\left(\frac{1}{2}(\pi)\right)$ $= 10 \text{ m s}^{-1}$ 2 $v = 2 + 8\sin\left(\frac{1}{2}(\pi)\right)$ $4 \cos \left(\frac{1}{2} \right)$ $a = 4\cos\left(\frac{1}{2}t\right)$

Maximum acceleration occurs when $\frac{da}{dt} = 0$ d *a t* $= 0$, therefore:

$$
\frac{da}{dt} = -2\sin\left(\frac{1}{2}t\right)
$$

$$
-2\sin\left(\frac{1}{2}t\right) = 0
$$

$$
\frac{1}{2}t = 0 + k\pi
$$

 $t = 2k\pi$

So in the interval $0 \le t \le 4\pi$, maximum acceleration occurs at: $t = 0, t = 2\pi$ and $t = 4\pi$

Substituting $t = 0$ into $a = 4\cos\left(\frac{1}{2}\right)$ $a = 4\cos\left(\frac{1}{2}t\right)$ gives:

$$
a = 4\cos\left(\frac{1}{2}(0)\right)
$$

$$
= 4 \text{ m s}^{-2}
$$