Mechanics 2

Solution Bank

Exercise 1B

1 a Components of velocity (3 s.f.):

$$u_x = 25 \cos 40^{\circ}$$

= 19.2 m s⁻¹
 $u_y = 25 \sin 40^{\circ}$
= 16.1 m s⁻¹

b
$$\mathbf{u} = (19.2\mathbf{i} + 16.1\mathbf{j}) \,\mathrm{m \, s}^{-1}$$

2 a Components of velocity (3 s.f.):

$$u_x = 18\cos 20^{\circ}$$

= 16.9 m s⁻¹
 $u_y = -18\sin 20^{\circ}$
= -6.15 m s⁻¹

b
$$\mathbf{u} = (16.9\mathbf{i} - 6.15\mathbf{j}) \,\mathrm{m \, s}^{-1}$$

3 **a** $\tan \alpha = \frac{5}{12}$ so $\sin \alpha = \frac{5}{13}$ and $\cos \alpha = \frac{12}{13}$

Components of velocity (3 s.f.):

$$u_x = 35 \cos \alpha$$

$$= 35 \times \frac{12}{13}$$

$$= 32.3 \text{ m s}^{-1}$$

$$u_y = 35 \sin \alpha$$

$$= 35 \times \frac{5}{13}$$

$$= 13.5 \text{ m s}^{-1}$$

b
$$\mathbf{u} = (32.3\mathbf{i} + 13.5\mathbf{j}) \,\mathrm{m \, s}^{-1}$$

4 **a** $\tan \alpha = \frac{7}{24}$ so $\sin \alpha = \frac{7}{25}$ and $\cos \alpha = \frac{24}{25}$

Components of velocity (3 s.f.):

$$u_x = 28\cos\theta$$
= 26.9 m s⁻¹

$$u_y = -28\sin\theta$$
= -7.8 m s⁻¹

b
$$\mathbf{u} = (26.9\mathbf{i} - 7.8\mathbf{j}) \text{ m s}^{-1}$$

1

Mechanics 2

Solution Bank

5 Speed is magnitude of velocity:

$$|\mathbf{U}| = \sqrt{6^2 + 9^2}$$

= 10.816...

The initial speed of the particle is 10.8 ms⁻¹ (3 s.f.).

$$\tan \alpha = \frac{9}{6}$$

$$\alpha = 56.309...$$

Particle is projected at an angle of 56.3° above the horizontal (3 s.f.).

$$\left|\mathbf{U}\right| = \sqrt{4^2 + 5^2}$$

$$= 6.4031...$$

The initial speed of the particle is 6.40 ms^{-1} (3 s.f.).

$$\tan \alpha = \frac{5}{4}$$

$$\alpha = 51.340...$$

Particle is projected at an angle of 51.3° below the horizontal (3 s.f.).

$$\tan \alpha = \frac{2k}{3k} = \frac{2}{3}$$

$$\Rightarrow \alpha = 33.690...$$

The angle of projection is 33.7° (3 s.f.).

$$(3\sqrt{13})^2 = (3k)^2 + (2k)^2$$

$$9 \times 13 = 9k^2 + 4k^2$$

$$117 = 13k^2$$

$$k^2 = 9$$

$$k = \pm 3$$

