Mechanics 2

Solution Bank

Exercise 1A

1 a $R(\downarrow): u_v = 0, t = 5 \text{ s}, a = g = 9.8 \text{ ms}^{-2}, s = h$

 $s = ut + \frac{1}{2}at^{2}$ $h = 0 + \frac{1}{2} \times 9.8 \times 5^{2}$ = 122.5The height *h* is 122.5 m.

b $\operatorname{R}(\rightarrow): u_x = 20 \text{ ms}^{-1}, t = 5 \text{ s}, s = x$ s = vt $x = 20 \times 5$ = 100

The particle travels a horizontal distance of 100 m.

2 a
$$R(\rightarrow): u_x = 18 \text{ m s}^{-1}, t = 2 \text{ s}, s = x$$

 $s = vt$
 $x = 18 \times 2$
 $= 36$
 $R(\downarrow): u_y = 0, t = 2 \text{ s}, a = g = 9.8 \text{ ms}^{-2}, s = y$
 $s = ut + \frac{1}{2}at^2$
 $h = 0 + \frac{1}{2} \times 9.8 \times 2^2$
 $= 19.6$

b
$$d^2 = 36^2 + 19.6^2$$

 $d = \sqrt{1680.16} = 40.989...$

The distance from the starting point is 41.0 m (3 s.f.).

The horizontal and vertical components of the displacement are 36 m and 19.6 m respectively.

Mechanics 2

Solution Bank

3 R(\downarrow): $u_y = 0$, $a = g = 9.8 \text{ ms}^{-2}$, s = 160 m, t = ?

$$s = ut + \frac{1}{2}at^{2}$$

$$160 = 0 + \frac{1}{2} \times 9.8 \times t^{2}$$

$$t^{2} = \frac{160}{4.9}$$

$$t = \pm \frac{40}{7}$$

The negative root can be ignored.

R(→):
$$u_x = U$$
, $t = \frac{40}{7}$ s, $s = 95$ m
 $s = vt$
 $95 = U \times \frac{40}{7}$
 $U = \frac{7 \times 95}{40} = 16.625$

The projection speed is 16.6 ms^{-1} (3s.f.).

4
$$R(\downarrow)$$

 $u = 0, s = 16, a = 9.8, t = ?$
 $s = ut + \frac{1}{2}at^{2}$
 $16 = 0 + 4.9t^{2}$
 $t^{2} = \frac{16}{4.9} = 3.265...$
 $t = 1.807$
Let the speed of the projection be $u \,\mathrm{m \, s^{-1}}$
 $R(\rightarrow)$

s = ut $140 = u \times 1.807...$ $u = \frac{140}{1.807...}$ = 77.475The speed of projection of the particle is

 $77.5\,\mathrm{ms}^{-1}$ (3 s.f.)

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

5 Whilst particle is on the table:

 $R(\rightarrow)$ s = vt $2 = 20 \times t$ t = 0.1Once particle leaves the table: $R(\downarrow) u_y = 0, a = g = 9.8 \text{ ms}^{-2}, s = 1.2 \text{ m}, t = ?$ $s = ut + \frac{1}{2}at^2$ $1.2 = 0 + \frac{1}{2} \times 9.8 \times t^2$

$$t^2 = \frac{1.2}{4.9}$$

$$t = \pm 0.49487..$$

The negative root can be ignored.

The total time the particle takes to reach the floor is 0.1 + 0.49 = 0.59 s (2s.f.).

6 R(\downarrow) $u_y = 0$, $a = g = 9.8 \text{ ms}^{-2}$, s = 9 cm = 0.09 m, t = ?

$$s = ut + \frac{1}{2}at^{2}$$

$$0.09 = 0 + \frac{1}{2} \times 9.8 \times t^{2}$$

$$t^{2} = \frac{0.09}{4.9}$$

$$t = \pm 0.13552...$$

The negative root can be ignored. $R(\rightarrow): u_x = 14 \text{ ms}^{-1}, t = 0.13552... \text{ s}, s = x$ s = vt $x = 14 \times 0.13552...$ x = 1.8973...

The dart is thrown from a point 1.90 m (3s.f.) from the board.

7 a Once particle leaves the table:

R(
$$\downarrow$$
) $u_y = 0, a = g = 9.8 \text{ ms}^{-2}, s = 1.2 \text{ m}, t = ?$
 $s = ut + \frac{1}{2}at^2$
 $1.2 = 0 + \frac{1}{2} \times 9.8 \times t^2$
 $t^2 = \frac{1.2}{4.9}$
 $t = \pm 0.49487...$
Total travel time is 1.0 s, so particle is in conta

 $2 \,\mathrm{m}$

 $5\,\mathrm{ms}^{-1}$

Ums⁻¹

INTERNATIONAL A LEVEL

Mechanics 2

Solution Bank

7 **b** Considering forces acting on particle while on table: $R(\downarrow): R = mg$

$$R(\rightarrow): \quad F = ma$$

$$-\mu R = ma \quad \text{since } F = F_{MAX}$$

$$-\mu mg = ma$$

$$a = -\mu g \qquad (1)$$

Use equations of motion to calculate the acceleration of the particle whilst on the table:

$$s = 2 \text{ m}, u = 5 \text{ ms}^{-1}, t = 0.50513...\text{ s}, a = ?$$

$$s = ut + \frac{1}{2}at^{2}$$

$$2 = (5 \times 0.50513...) + (\frac{1}{2} \times a \times 0.50513...^{2})$$

$$0.12757... \times a = 2 - 2.5256...$$

$$a = -0.52564...$$

$$a = \frac{0.52504...}{0.12757...}$$

$$a = -4.1201...$$
 (2)

Substitute (2) in (1):

$$-4.1201... = -\mu g$$

-4.1201... = -9.8× \mu
\mu = 0.42042...

The coefficient of friction is 0.42 (2s.f.).

7 c While particle is on the table: s = 2 m, u = 5 m s⁻¹, t = 0.50513... s, v = U

$$s = \frac{1}{2}(u+v)t$$

$$2 = \frac{1}{2}(5+U)0.50513...$$

$$5+U = \frac{4}{0.50513...}$$

$$U = 7.9187...-5 = 2.9187...$$

Considering horizontal motion of particle once it has left the table: R(\rightarrow): $u_x = U = 2.9187 \dots \text{m s}^{-1}$, t = 0.495 s, s = x

$$s = vt$$

 $x = 2.9187... \times 0.495$
 $x = 1.445$

The total distance travelled = 1.45 + 2 = 3.45 m (3 s.f.).

