C	Question		Answer	Marks	Guidance
1	(a)	(i)	KE change: $\frac{1}{2} \times 0.6 \times (7.5^2 - 5.5^2)$ = 7.8 J GPE change: $0.6 \times 9.8 \times 1.5 = 8.82$ J	M1 A1 B1 [3]	Difference of two KE terms Allow –8.82J
1	(a)	(ii)	W is work done against resistance 7.8 = 8.82 - W so $W = 1.02 \text{ J}$	[3] M1 A1 [2]	W–E all terms. Allow sign errors FT (i) only. Also FT only if mod (their KE) < mod (their PE) -1.02 gets M1A0; 16.62 gets M1A0
1	(a)	(iii)	Average resistance is F so $F \times 1.5 = 1.02$ so $F = 0.68$ Power is 0.68×5.5 = 3.74 so 3.74 W	M1 A1 M1 A1 [4]	Use of WD = Fs OR find $a = 8.667$ and use F = $0.6g - 0.6 \times 8.667$ May be implied. FT (ii) Use of $P = Fv$ any calculated F cao
1	(b)	(i)	$R = mg\cos 40$ $F_{max} = mg\sin 40$ $F_{max} = \mu R$ so $\mu = \frac{mg\sin 40}{mg\cos 40} = \tan 40$	B1 B1 M1 E1 [4]	Seen or implied Seen or implied Use of $F = \mu R$: substitute <i>F</i> and <i>R</i> This is the minimum amount of working needed to earn the E1 Must see explicit evidence of method Note: <i>g</i> omitted, treat as MR
1	(b)	(ii)	EITHER $\tan 40 \times 0.8 \times 9.8 \times \cos 20$ $\times 3 (= 18.545)$ $(+)0.8 \times 9.8$ $\times 3 \sin 20 (= 8.044)$ = 26.5897 so 26.6 J (3 s.f.)	B1 M1 B1 M1 A1	Use of $F_{\text{max}} = \mu R$ with tan 40 and cos 20 Use of WD = Fs NOTE: This mark may be awarded here or for use in PE term Use of mgh Allow sin \leftrightarrow cos interchange Two relevant terms added Cao Allow 26.7 Allow 27 Omission of g can get B0M1B1M1A0

PMT

C	uestion	Answer	Marks	Guidance
		OR		
		$\tan 40 \times 0.8 \times 9.8 \times \cos 20 \ (= 6.182)$	B1	Use of $F_{\text{max}} = \mu R$ with tan 40 and cos 20
		$(+) 0.8 \times 9.8 \times \sin 20 (= 2.68)$	B1	Allow $\sin \leftrightarrow \cos$ interchange
		(= 8.8632444)	M1	Two relevant forces added
		WD is 3 × 8.8632444	M1	Use of $WD = Fs$ (for at least one of forces)
		= 26.5897 so 26.6 J (3 s.f.)	A1	
2	(;)	a.c. moments about B	[5]	Omission of g can get B0B1M1M1A0
2	(i)	$10T_{\rm C} - 15 \times 2 = 0$	M1	Moments with all forces present, no extra forces.
		so $T_{\rm C} = 3$. Tension at C is 3 N	A1	Noments with an forces present, no exita forces.
		$\uparrow T_{\rm C} + T_{\rm B} - 15 = 0$	M1	May take moments again
		so $T_{\rm B} = 12$. Tension at B is 12 N	F1	
			[4]	
2	(ii)	a.c. moments about A		
		$25T\sin 30 - 15 \times 17 = 0$	M1	Attempt at moments with resolution; allow $\cos \leftrightarrow \sin$ error. All forces present, no extra forces
		so $T = 20.4$	A1	cao
		At A Let force \uparrow be <i>Y</i> N		
		\uparrow <i>Y</i> + <i>T</i> sin30 - 15 = 0 so <i>Y</i> = 4.8	B1	FT (can take moments about C)
		$\rightarrow X = T \cos 30 = 17.6669$ N	B1	FT Need not be evaluated
		$\sqrt{4.8^2 + (T\cos 30)^2}$	M1	
		= 18.3073755 so 18.3 N (3 s.f.)	A1 [6]	cao
2	(iii)	Let force be <i>P</i> .		
		a.c. moments about D.		
		$8 \times 15 - 12 \times P = 0$	M1	Moments about D with all forces present, no extra forces
		so $P = 10$ on point of tipping	A1	cao
		Using $F_{\text{max}} = \mu R$ on point of slipping	M1	
		with $R = 15$	B1	
		gives $F_{\text{max}} = 0.65 \times 15 = 9.75$	A1	cao
		so slips first	E1	cao and WWW
			[6]	

G	Question		Answer	Marks	Guidance
3	(a)	(i)	$300\left(\frac{\overline{x}}{\overline{y}}\right) = 72\left(-6\atop3\right) + 192\left(4\\-6\right) + 36\left(10\\-4\right)$	B1 M1 B1	Correctly identifying the position of the c.m of triangle EFH (10, -4) A systematic method for at least 1 cpt <i>Either</i> all <i>x</i> or all <i>y</i> values correct <i>or</i> 2 vector terms correct <i>or</i> allow one common error in both components, e.g. one wrong mass, misunderstanding
			$\begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 696 \\ -1080 \end{pmatrix}$ so $\overline{x} = 2.32$ $\overline{y} = -3.6$	A1 A1	of c.m. of triangle Allow FT for either if only error is common to both
3	(a)	(ii)	$\begin{array}{c} B & 12 & C & 2.32 \\ \hline \alpha & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline 3.6 \\ G \end{array}$ centre of mass is at G	[5]	
			$\tan \alpha = \frac{9.6}{14.32}$ so $\alpha = 33.8376$ so 33.8° (3 s.f.)	M1* B1 M1dep* A1 [4]	Identifying correct angle. May be implied At least 1 relevant distance found. FT (i) Use of $\arctan \frac{9.6}{14.32}$ or $\arctan \frac{14.32}{9.6}$ o.e. cao or $180^{\circ} - 33.8^{\circ}$
3	(b)	(i)	Marking given tension and thrust Marking all other forces internal to rods acting on A, B and C (as T or C)	B1 B1 [2]	Each labelled with magnitude and correct direction Need ALL forces at <i>A</i> , <i>B</i> and <i>C</i> . Need pairs of arrows on <i>AB</i> , <i>AC</i> and <i>BC</i>

PMT

G	Question		Answer	Marks	Guidance
3	(b)	(ii)	Equilibrium at A ↑		
			$T_{\rm AB} \cos 30 - 18 = 0$	M1	Equilibrium at one pin-joint
			$T_{\rm AB} = 12\sqrt{3}$. Force in AB: $12\sqrt{3}$ N (T)	A1	20.8 Sign consistent with tension on their diagram
			$A \leftarrow$		
			$T_{\rm AC} + T_{\rm AB} \cos 60 + 5 = 0$	M1	
			$T_{\rm AC} = -(5 + 6\sqrt{3})$.		-15.39
			Force in AC: $(5 + 6\sqrt{3}) N(C)$	F1	FT their T_{AB}
			At B in direction AB		
			$T_{\rm BR}\cos 60 - T_{\rm AB} = 0$		
			so $T_{BR} = 24\sqrt{3}$	M1	Allow FT Other methods are possible, but award this M1 only for a
			At B in direction BC		complete method that would lead to $T_{\rm BC}$
			At B in direction BC $T_{\rm BC} - T_{\rm BR} \cos 30 = 0$		
			$T_{\rm BC} = 7_{\rm BR} \cos 36 = 0$ $T_{\rm BC} = 36$. Force in BC: 36 N (T)	F1	
				A1	cao WWW T/C all correct
				[7]	
4	(i)		$26t = 3 \times 13$	M1	Use of $Ft = m(v - u)$ or N2L to find $a (= 26/3)$ and use $v = u + at$
			t = 1.5 so 1.5 s	A1	сао
4	(ii)		PCLM	[2]	
-	(11)		$10 \times 0 + 3 \times 13 = 10v_Q + 3v_P$	M1	Use of PCLM
			$39 = 10v_{\rm Q} + 3v_{\rm P}$	A1	Any form
			NEL		
			$\frac{v_{\rm Q} - v_{\rm P}}{0 - 13} = -e$	M1	Use of NEL. Allow sign errors but not inversion
			$v_0 - 15 = 13e$	A1	Any form
			$v_Q v_P = 15c$		Eliminating one of v_0 or v_P OR allow substitution of given result in one
				M1	equation and check both answers in other equation
			$v_{\rm Q}=3(1+e)$	B1	cao; aef
			$v_{\rm P}=3-10e$		Properly shown
			$v_{\rm Q} = 3(1+e)$ $v_{\rm P} = 3 - 10e$	E1 [7]	Properly shown

Mark Scheme

PMT

June 2	2012
--------	------

Question		Answer	Marks	Guidance
4	(iii)	Need $v_{\rm P} < 0$ so $3 - 10e < 0$ Hence $\frac{3}{10} < e \le 1$	M1 A1 [2]	Accept \leq cao (Allow $e \leq 1$ omitted) Correct answer www gets 2/2
4	(iv)	When $e > \frac{3}{10}$, its speed is $10e - 3$ We require $(10e - 3) > 3(1 + e)$ so $7e > 6$ and so $\frac{6}{7} < e \le 1$	M1 M1 A1 A1	FT their v_Q SC1 for $(3 - 10e) > \pm 3(1 + e)$ FT their v_Q cao. Allow $e > \frac{6}{7}$ (0.857) Correct answer www gets 4/4
		, ,	[4]	cao. Anow $e > \frac{1}{7}$ (0.057) concet answer www gets 4/4
4	(v)	Either $v_Q = 4.5$ and $v_P = -2$ When they collide the speed of Q is -4.5 and of P is 2 PCLM	M1 M1	Substitute $e = 0.5$; FT their v_Q Change signs of their velocities
		$10 \times -4.5 + 3 \times 2 = 13V$ so $V = -3$ and velocity is -3 m s ⁻¹	M1 A1 [4]	Use of PCLM Allow sign errors cao; OR 3 m s ⁻¹ to the right or use argument about final LM is –ve of original LM
		Or 10(-3(1+e)) + 3(10e-3) = 13V	M1	Use of PCLM; Allow sign errors ; FT their v_Q
		-39 = 13V so $V = -3$ and velocity is -3 m s^{-1}	M1 M1 A1 [4]	Change signs of their velocities Simplify cao; OR 3 m s ⁻¹ to the right
4	(vi)	3(-3-2) = -15 N s	B1 [1]	FT 3(their(v) – 2) Using 10(–3 +4.5) = 15 gets B0 until it leads to correct answer