

GCE

Mathematics (MEI)

Advanced GCE 4762

Mechanics 2

Mark Scheme for June 2010

Q 1		mark		sub
(i)	For P $200 \times 5 + 250 = 200v_p$ $v_p = 6.25 \text{ so } 6.25\mathbf{i} \text{ m s}^{-1}$ For Q	M1 E1	Award for I-M Accept no i and no units	
	$250 \times 5 - 250 = 250v_{Q}$	M1	Must have impulse in opposite sense	
	$v_Q = 4 \text{ so } 4\mathbf{i} \text{ m s}^{-1}$	A1	Must indicate direction. Accept no units.	4
(ii)	i direction positive PCLM: $2250 = 200 \times 4.5 + 250 w_Q$ $w_Q = 5.4 \text{ so } 5.4 \text{ im s}^{-1}$ NEL: $\frac{w_Q - 4.5}{4 - 6.25} = -e$ e = 0.4	M1 F1 E1 M1 A1	PCLM used. Allow error in LHS FT from (i) Any form. FT only from (i) NEL . Allow sign errors Signs correct. FT only from (i) cao	6
(iii)	i direction positive Suppose absolute vel of object is – V i $200 \times 4.5 = -20V + 180 \times 5.5$ V = 4.5 speed of separation is $5.5 + 4.5 = 10 \text{ m s}^{-1}$	M1 B1 A1 A1 F1	Applying PCLM. All terms present. Allow sign errors. Correct masses All correct (including signs) FT their <i>V</i> .	5
(iv)	$180 \times 5.5 + 250 \times 5.4 = 430W$ $W = 5.4418 \text{ so } 5.44 \text{ i m s}^{-1} (3 \text{ s. f.})$	M1 A1	Using correct masses and velocities cao	2
				17

Q 2		mark		sub
(i)	$20\left(\frac{\overline{x}}{\overline{y}}\right) = 15\left(\frac{20}{0}\right) + 3\left(\frac{0}{100}\right) + 2\left(\frac{25}{200}\right)$	M1 B1 A1	Method to obtain at least 1 coordinate '100' or '25' correct Either one RHS term correct or one component of two RHS terms correct	
	$\overline{x} = 17.5$ $\overline{y} = 35$	A1 A1	KHS terms correct	5
(ii)	$25\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 350\\700 \end{pmatrix} + 5\begin{pmatrix} 40\\200 \end{pmatrix}$ so $\overline{x} = 22$, $\overline{y} = 68$	M1 E1	Using (i) or starting again Clearly shown.	2
(iii)	We need the edge that the \overline{x} position is nearest $\overline{x} = 22$; distances are 22 to PQ, 18 to SR 15 to QR so edge QR	M1 B1 B1 A1	This may be implied One distance correct All distances correct	4
(iv)	Moments about RS In sense xOy $T \sin 50 \times 200 - T \cos 50 \times 40$ $-20g \times (40 - 17.5) = 0$	M1 B1 M1	Moments about RS attempted Use of weight not mass below. FT mass from here Attempt to find moment of T about RS, including attempt at resolution. May try to find perp dist from G to line of action of the force. $40-17.5$	
	$-20g \times (40-17.5) = 0$ $T = 34.5889 \text{ so } 34.6 \text{ N } (3 \text{ s. f.})$	A1 A1	All correct allowing sign errors cao (except for use of mass)	7 18

Q 3		mark		sub
(i)	a.c. moments about A $1 \times T - 2 \times 300 = 0$ so $T = 600$ Resolving $\rightarrow X = 0$ $\uparrow T - Y = 300$ so $Y = 300$	E1 B1 M1 A1	Justified	4
(ii)	Diagram The working below sets all internal forces as tensions; candidates need not do this.	B1	All external forces marked consistent with (i) All internal forces with arrows and labels	2
(iii)	Let angle DAB be θ . $\cos \theta = \frac{1}{2}$, $\sin \theta = \frac{\sqrt{3}}{2}$ A $\uparrow -300 - T_{AB} \sin \theta = 0$ so $T_{AB} = -200\sqrt{3}$ so force is $200\sqrt{3}$ (C) A $\to T_{AD} + T_{AB} \cos \theta = 0$ so $T_{AD} = 100\sqrt{3}$ so force is $100\sqrt{3}$ (T) C $\uparrow T_{CD} \sin \theta - 300 = 0$ so $T_{CD} = 200\sqrt{3}$ so force is $200\sqrt{3}$ (T) C $\leftarrow T_{BC} + T_{CD} \cos \theta = 0$ so $T_{BC} = -100\sqrt{3}$ so force is $100\sqrt{3}$ (C) B $\uparrow T_{AB} \sin \theta + T_{BD} = 0$ so $T_{BD} = 300$ so force is 300 (T)	B1 M1 M1 A1 F1 F1 F1 F1 F1	Or equivalent seen Attempt at equilibrium at pin-joints 1 equilib correct, allowing sign errors All T/C consistent with their calculations and diagrams	9
(iv)	AD, AB, BC, CD 300 N, <i>X</i> and <i>Y</i> not changed. Equilibrium equations at A and C are not altered B \uparrow $T_{AB} \sin \theta + T'_{BD} + 600 = 0$ so $T'_{BD} = -300$ so force is 300 (C)	B1 E1 M1 A1	C not needed. [If 300 N (C) given WWW, award SC1 (NB it must be made clear that this is a compression)]	4 19

Q 4		mark		sub
(i)	Let friction be F N and normal reaction R N $F_{\text{max}} = 58\cos 35$ $R = 16g + 58\sin 35$ $F_{\text{max}} = \mu R$ so $\mu = 0.249968$ about 0.25	B1 M1 A1 M1 E1	Need not be explicit Both terms required.	5
(ii)	WD is 70cos 35×3 = 210cos 35 so 172.0219 = 172 J (3 s. f.) Average power is WD/time so 34.4043 = 34.4 W (3 s. f.)	M1 A1 M1 A1	Use of WD = Fd . Accept $\cos 35$ omitted.	4
(iii)	Using the constant acceleration result $s = \frac{1}{2}(u+v)t$ with $s = 3$, $u = 0$, $v = 1.5$ and $t = 5$ we see that $3 \neq \frac{1}{2}(0+1.5) \times 5 = 3.75$	M1 E1	Attempt to substitute in <i>suvat</i> (sequence) Conclusion clear	2
(iv)	172.0219 = $\frac{1}{2} \times 16 \times 1.5^{2}$ +0.25×(16g+70sin 35)×3 + WD so WD by S is 6.30916 so 6.31 J (3 s. f.)	M1 M1 A1 M1 A1 A1	Using W-E equn, allow 1 missing term KE term attempted correct Attempt at using new F in $F_{\rm max} = \mu R$ All correct cao	7 18