4762 Mechanics 2

Q 1		mark	comment	sub
(a)		D1		4
(i)	before u u	B1		1
	$ \begin{pmatrix} P \\ m kg \end{pmatrix} $ $ \begin{pmatrix} Q \\ km kg \end{pmatrix} $			
	after ${v}$			
	/3			
(ii)				
	$mu - kmu = mv + km\frac{u}{3}$	M1	PCLM applied	
	-	A1	Either side correct (or equiv)	
	$v = \left(1 - \frac{4k}{3}\right)u$	E1	Must at least show terms grouped	
	(3)		· .	3
(iii)				•
	Need $v < 0$	E1	Accept $\frac{4k}{3} > 1$ without reason	
	so $k > \frac{3}{4}$	B1		
	4		[SC1: $v = 0$ used and inequality	
			stated without reason]	•
				2
(iv)				
	$\frac{\frac{u}{3}-v}{-u-u} = -\frac{1}{2}$	M1	Use of NEL	
		A1		
	$SO v = -\frac{2u}{3}$	E1		
	$-\frac{2u}{3} = u\left(1 - \frac{4k}{3}\right)$	M1		
	so $k = 1.25$	A1	cao	
				5
(b)				
(i)	$9 \binom{1}{-2} + 5 \binom{3}{2} = 8\mathbf{V}$	M1	Use of PCLM	
	. , . ,	B1	Use of mass 8 in coalescence	
	(3)	M1	Use of $\mathbf{I} = \mathbf{F}t$	
	$\mathbf{V} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$	E1		
	、 /			4
(ii)				
	i cpt $3 \rightarrow -3 \times \frac{1}{2}$	M1	Allow wrong sign	
	Δ			

j cpt unchanged	B1	May be implied
new velocity $\begin{pmatrix} -1.5 \\ -1 \end{pmatrix}$ m s ⁻¹	A1	cao [Award 2/3 if barrier taken as $\binom{1}{0}$]
		3
	18	

Q 2		mark	comment	sub
(a) (i) (A)	Yes. Only WD is against conservative forces.	E1	Accept only WD is against gravity or no work done against friction.	
(B)	Block has no displacement in that direction	E1		2
(ii)				
(,	$0.5 \times 50 \times 1.5^2 = 20gx - 5gx$	M1	Use of WE with KE. Allow $m = 25$.	
		B1	Use of 50	
		M1	At least 1 GPE term	
		A1	GPE terms correct signs	
	x = 0.38265 so 0.383 m (3 s. f.)	A1	cao	
	,			5
(iii)				
	$0.5 \times 50 \times V^2 - 0.5 \times 50 \times 1.5^2$	M1	WE equation with WD term. Allow GPE terms missing	
		B1	Both KE terms. Accept use of 25.	
	$=2\times20g-2\times5g-180$	B1	Either GPE term	
		B1	180 with correct sign	
	V = 2.6095 so 2.61 m s ⁻¹	A1	cao	_
				5
(b)	Force down the slope is			
	·		Both terms. Allow mass not	
	$2000 + 450g \sin 20$	M1	weight	
		B1	Weight term correct	
	Using $P = Fv$	M1		
	$P = (2000 + 450g\sin 20) \times 2.5$	F1	FT their weight term	
	<i>P</i> = 8770.77 so 8770 W (3 s. f.)	A1	cao	
	,			5
		17		

Q 3		mark	comment	sub
(i)	a vy magnanta abayt A	N/4	Mamanta aquation	
	c.w. moments about A $5R_B - 3 \times 85 = 0$ so $R_B = 51$ giving	M1	Moments equation.	
	51 N ↑	A1	Accept no direction given	
	Either a.c. moments about B or	M1		
	resolve \uparrow $R_{\rm A} = 34$ so 34 N \uparrow	F1	Accept no direction given	
	N _A = 54 30 04 N		Accept no direction given	4
(ii)				
	c.w. moments about A	M1	Moments with attempt to resolve at least	
			one force. Allow $s \leftrightarrow c$.	
	$85 \times 3\cos\alpha - 27.2 \times 5\sin\alpha = 0$	B1	Weight term	
		B1	horiz force term	
	SO $\tan \alpha = \frac{3 \times 85}{27.2 \times 5} = \frac{15}{8}$	E1	Must see some arrangement of	
	27.2×5 8		terms or equiv	
			or equiv	4
(iii)				
	1			
	A > S			
	341	B1	All forces present and labelled	
		ы	All forces present and labelled	
	Fa			
	85 N ∛ B			
	a.c. moments about B	M1	Moments with attempt to resolve	
	a.c. moments about b	IVII	forces	
	$85 \times 2 \times \cos \alpha + 34 \times 2.5 - 5S \times \sin \alpha = 0$	B1	and all relevant forces present 34×2.5	
	$63 \times 2 \times \cos \alpha + 34 \times 2.3 - 33 \times \sin \alpha = 0$		All other terms correct. Allow sign	
		A1	errors.	
	S = 37.4	A1	All correct	
	Resolving horizontally and			
	vertically	M1	Either attempted	
	$\rightarrow S - F - 34 \sin \alpha = 0 \text{ so } F = 7.4$	E1		
	$\uparrow R - 85 - 34\cos\alpha = 0$	A1	R = 101 need not be evaluated	
			nere [Allow A1 for the two expressions	
			if	
			correct other than $s \leftrightarrow c$]	
	Using $F = \mu R$	M1		
	$\mu = \frac{7.4}{101} = 0.07326$ so 0.0733	A1	620	
	(3 s. f.)	Λ1	cao	
	(- 5)			10
		18		

Q 4		mark	comment	sub
(i)	Taking a <i>y</i> -axis vert downwards from O		Allow areas used as masses	
	$2\pi\sigma \times 8^2 \times 4 + 2\pi\sigma \times 8 \times k \times \frac{k}{2}$	M1	Method for c.m.	
	2	B1 B1 B1	'4' used $16\pi k$ k/2 used	
	$= \left(2\pi\sigma \times 8^2 + 2\pi\sigma \times 8k\right)\overline{y}$	B1	Masses correct	
	so $\overline{y} = \frac{64 + k^2}{16 + 2k}$	E1	Must see some evidence of simplification Need no reference to axis of symmetry	6
				U
(ii)	k = 12 gives OG as 5.2 and mass as $320\pi\sigma$	B1	Allow for either. Allow $\sigma = 1$	
	$320\pi\sigma\times5.2+\pi\sigma\times8^2\times12$	M1 B1	Method for c.m. combining with (i) or starting again One term correct	
	$= (320\pi\sigma + 64\pi\sigma)\overline{y}$	B1	Second term correct	
	$\overline{y} = 6\frac{1}{3}$	E1	Some simplification shown	5
(iii)				
	$ \begin{array}{c c} 0 & & & \\ \hline 12 & & & \\ 8 & & & \\ \end{array} $	B1 B1 B1	G above edge of base $12-6\frac{1}{3}=5\frac{2}{3}$ seen here or below 8 seen here or below	
	$\tan \theta = \frac{8}{5\frac{2}{3}}$	M1	Accept $\frac{5\frac{2}{3}}{8}$ or attempts based on $6\frac{1}{3}$ and 8.	
	$\theta = 54.6887 \text{ so } 54.7^{\circ} \text{ (3 s. f.)}$	A1	cao	5
(iv)	Slips when $\mu = \tan \theta$	M1	Or	
	$\frac{8}{5\frac{2}{3}} = 1.4117$	B1		
	< 1.5 so does not slip	A1	There must be a reason	3
		19		