Q 1		mark		Sub
(a)				
(i) (A)	PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 8v$ v = -0.5 so 0.5 m s ⁻¹ in opposite direction to initial motion of P	M1 A1 A1	Use of PCLM and correct mass on RHS Any form Direction must be negative and consistent or clear. Accept use of a diagram.	3
(B)	$0.5 \times 2 \times 4^{2} + 0.5 \times 6 \times 2^{2} - 0.5 \times 8 \times (-0.5)^{2}$ = 27 J	M1 A1	Use of KE. Must sum initial terms. Must have correct masses FT their (A) only	2
(ii) (A)	PCLM \rightarrow +ve $2 \times 4 - 6 \times 2 = 2v_{p} + 6v_{Q}$ $v_{p} + 3v_{Q} = -2$ NEL \rightarrow +ve $\frac{v_{Q} - v_{p}}{-2 - 4} = -\frac{2}{3}$ $v_{Q} - v_{p} = 4$ $v_{Q} = 0.5 \text{ so } 0.5 \text{ m s}^{-1} \text{ in orig direction of P}$ $v_{p} = -3.5 \text{ so } 3.5 \text{ m s}^{-1} \text{ in opp to orig dir of P}$	M1 A1 M1 A1 A1 A1	Use of PCLM Any form NEL Any form cao. Direction need not be made clear. cao. Direction must be negative and consistent or clear (e.g diag)	6
(B)	\rightarrow +ve 2×-3.5-2×4 = -15 N s so 15 N s in opp to orig direction	M1 A1	Use of change in momentum with correct mass. FT (A). Dir must be clear (e.g. diag)	2
(b)	Let $\alpha = \arcsin(12/13)$ and $\beta = \arcsin(3/5)$ Parallel: $26 \cos \alpha = u \cos \beta$ so $26 \times \frac{5}{13} = u \times \frac{4}{5}$ and $u = 12.5$ Perp: $e = \frac{u \sin \beta}{26 \sin \alpha}$ $= \frac{12.5 \times \frac{3}{5}}{26 \times \frac{12}{13}} = \frac{5}{16}$	M1 A1 A1 F1 F1	PCLM parallel to plane attempted. At least one resolution correct NEL on normal components attempted. FT their <i>u</i> FT their <i>u</i>	6
				19

Q 2		mark		Sub
(i)	Diagrams	B1	Internal force at B must be shown	
	cw moments about A			
	$2 \times 90 - 3R_{\rm B} = 0$	M1	1 st moments equation attempted for either force.	
	$R_{\rm B} = 60$ so 60 N upwards	A1	Accept direction not specified	
	cw moments about R: $T\downarrow$			
	$75 \times 1 + 3T - 60 \times 0.5 = 0$	M1	2 nd moments equation for other force. All forces	
			present. No extra forces.	
	T = -15 so 15 N upwards	A1 A1	Allow only sign errors Direction must be clear (accept diag)	
			Direction must be clear (accept diag)	6
(ii)	cw moments about A			
(11)	$90 \times 2\cos 30 - V \times 3\cos 30 - U \times 3\cos 60 = 0$	M1	Moments equation with resolution. Accept terms	
			missing	
		A1	All correct. Allow only sign errors.	
	giving $60\sqrt{3} = U + V\sqrt{3}$	E1	Clearly shown	3
(:::)	Diaman	D4		
(iii)	Diagram	B1	U and V correct with labels and arrows	1
(i)				
(iv)	ac moments about C $75 \times 2\cos 30 + 3.5V \cos 30 - 3.5U \cos 60 = 0$	M1	Moments equation with resolution. Accept term	
			missing	
	222	B1	At least two terms correct (condone wrong signs)	
	$\frac{300}{7}\sqrt{3} = U - V\sqrt{3}$	A1	Accept any form	
	Solving for <i>U</i> and <i>V</i>	M1	Any method to eliminate one variable	
	$U = \frac{360\sqrt{3}}{7} (= 89.0768)$	A1	Accept any form and any reasonable accuracy	
	$V = \frac{60}{7}$ (= 8.571428)	F1	Accept any form and any reasonable accuracy	
	7		[Either of <i>U</i> and <i>V</i> is cao. FT the other]	
	Resolve \rightarrow on BC		-	
	F = U	M1		
	so frictional force is $\frac{360\sqrt{3}}{7}$ N	F1		
	(= 89.1 N (3 s. f.))			
				8
				18

Q 3		mark		Sub
(a)	$20000 = (R + 900g \times 0.1) \times 16$	M1 B1 A1	Use of $P = Fv$, may be implied. Correct weight term All correct	
	<i>R</i> = 368 so 368 N	A1		4
(b) (i)	$F_{\max} = \mu mg \cos \alpha$ Force down slope is weight cpt $mg \sin \alpha$ Require $\mu mg \cos \alpha \ge mg \sin \alpha$ so $\mu \ge \tan \alpha = \frac{5}{12}$	B1 B1 E1	Correct expression for F_{max} or wt cpt down slope (may be implied and in any form) Identifying $\sin \alpha$ as $\frac{5}{13}$ or equivalent Proper use of $F \le \mu R$ or equivalent.	
			[$\mu = \tan \alpha$ used WW; SC1]	3
(ii)	either $0.5 \times 11 \times v^2$	M1	Use of work energy with at least three required terms attempted	
	$=11g \times 1.5 \times \frac{5}{13} + 0.2 \times 11g \times 1.5 \times \frac{12}{13} + 9$	B1	Any term RHS. Condone sign error.	
	15 15	B1 A1	Another term RHS. Condone sign error. All correct . Allow if trig consistent but wrong	
	$v^2 = 18.3717$ v = 4.2862 so 4.29 m s ⁻¹ (3 s. f.) or + ve up the slope	A1	сао	5
	$-11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1	Use of N2L	
	$a = -6.1239 \text{ m s}^{-2}$	В1 А1	Any correct term on LHS	
	$v^2 = -3a$	M1	use of appropriate <i>uvast</i>	
	$v = 4.286 \text{ m s}^{-1}$	A1	c.a.o.	
(iii)	continued overleaf			

4762

Mark Scheme

3	continued			
(iii)	either Extra GPE balances WD against			
	resistances	M1	Or equivalent	
	$mgx\sin\alpha$	B1		
	$= 6(x+3) + 0.2 \times 11g \times \cos \alpha (x+3)$	B1 B1 A1	One of 1^{st} three terms on RHS correct Another of 1^{st} 3 terms on RHS correct All correct. FT their <i>v</i> if used.	
	<i>x</i> = 4.99386 so 4.99 m (3 s. f.)	A1	сао.	6
	or 0.5×11×18.3717	M1 B1	Allow 1 term missing KE.FT their <i>v</i>	
	$= (1.5+x) \times 11g \times \frac{5}{13} - 6(1.5+x)$	B1	Use of 1.5 + x (may be below)	
	$-(1.5+x) \times 0.2 \times 11g \times \frac{12}{13}$	B1	WD against friction	
		A1	All correct	
	x = 4.99386 so 4.99 m (3 s. f.) or	A1	сао.	
	+ ve down the slope			
	$11g \times \frac{5}{13} - 0.2 \times 11g \times \frac{12}{13} - 6 = 11a$	M1	N2L with all terms present	
		A1	all correct except condone sign errors	
	a = 1.4145 m s ⁻²	A1		
	$4.286^2 = 2a(1.5+x)$	M1	use of appropriate uvast	
		B1	for $(1.5 + x)$ (may be implied)	
	x = 4.99	A1	c.a.o.	
				18

June 2006

Q 4		mark		Sub
(i)	$100\left(\frac{\overline{x}}{\overline{y}}\right) = 10\left(\frac{5}{0}\right) + 30\left(\frac{10}{15}\right) + 30\left(\frac{20}{15}\right) + 30\left(\frac{25}{30}\right)$	M1 B1 B1	Correct method for c.m. Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$100\left(\frac{\overline{x}}{\overline{y}}\right) = \begin{pmatrix} 1700\\1800 \end{pmatrix}$ $\overline{x} = 17\\\overline{y} = 18$	A1 A1	cao cao. [Allow SC 4/5 for $\overline{x} = 18$ and $\overline{y} = 17$]	5
(ii)	(17,18,20)	B1 B1	<i>x</i> - and <i>y</i> - coordinates. FT from (i). <i>z</i> coordinate	2
(iii)	cw moments about horizontal edge thro' D x component $P \times 20 - 60 \times (20 - 17) = 0$ P = 9	M1 B1 B1 A1	Or equivalent with all forces present One moment correct (accept use of mass or length) correct use of their \overline{x} in a distance FT only their \overline{x}	4
(iv)	Diagram	B1	Normal reaction must be indicated acting vertically upwards at edge on Oz and weight be in approximately the correct place.	1
(v)	On point of toppling ac moments about edge along Oz $30 \times Q - 60 \times 17 = 0$ Q = 34 Resolving horizontally $F = Q$ As 34 > 30, slips first	M1 B1 F1 B1 B1	Or equivalent with all forces present Any moment correct (accept use of mass or length) FT only their \overline{x} FT their Q correctly argued.	5 17