

Mathematics (MEI)

Advanced GCE Unit **4762:** Mechanics 2

Mark Scheme for January 2011

47	62
----	----

Q 1		mark	notes
(i)	Let normal reaction be R $\sin \alpha = \sqrt{1 - 0.8^2} = 0.6$ $R = 2.5 \times 9.8 \times 0.8$ $F_{\text{max}} = 0.85 \times R = 16.66$ Wt cpt down slope is $2.5 \times 9.8 \times 0.6 = 14.7$ 16.66 > 14.7 so at rest	B1 M1 B1 F1 B1 E1	Accept any form and implied Use of $F_{max} = \mu R$ Expression for <i>R</i> ; may be implied FT their <i>R</i> FT if their <i>F</i> and weight component show given result If <i>g</i> omitted, allow B1M1B0F1B0E1, so 4/6 [Award as follows for use of $\tan \alpha < \mu$: B1 $\tan \alpha = \frac{3}{4}$ E1 $\tan \alpha < \mu$ shown]
(ii)	Let the speeds down the plane be v_A and v_B . PCLM down the plane $1.5 \times 16 = 2.5v_A + 1.5v_B$ so $5v_A + 3v_B = 48$ NEL +ve down the plane $\frac{v_A - v_B}{0 - 16} = -0.4$ $v_A - v_B = 6.4$ $v_A = 8.4$ so 8.4 m s ⁻¹ down plane $v_B = 2$ so 2 m s ⁻¹ down plane	M1 A1 M1 A1 E1 F1 6	PCLM Any form NEL. Allow sign errors Any form Condone direction not clear if +8.4 seen Condone direction not clear if +2 seen. SC1 if 2 equations obtained and 8.4 substituted into one to obtain answer 2 (instead of E1F1)
(iii)	$1.5 \times (2 - 16)$ down plane = -21 N s down the plane so 21 Ns up the plane	M1 A1 A1 3	Use of $m(\mathbf{v} - \mathbf{u})$ If impulse on <i>A</i> found, treat as MR unless final answer relates this to impulse on <i>B</i> ± 21 N s Direction explicitly commented on

Mark Scheme

Q 1		mark	notes
(iv)	either		
	$(2.5 \times 9.8 \times 0.6 - F_{\text{max}}) \times t = 2.5(0 - 8.4)$	M1	Using Impulse-momentum (must use 8.4). sufficient to consider one term on LHS
		B1	Either side correct
		A1	Allow only sign errors
	so <i>t</i> = 10.7142 10.7 s (3 s. f.)	A1	cao
	or		
	Using N2L down the plane	M1	Using N2L ; sufficient to consider one force term
	a = -0.784	A1	Allow sign errors
		M1	Using appropriate suvat must use a or-a found by use of N2L and $u = 8.4$
	using $v = u + at$, $t = 10.7142 10.7 \text{ s} (3 \text{ s. f.})$	A1	cao
	or		
	$0.5 \times 2.5 \times 8.4^2 + (14.7 - 16.66)x = 0$	M1	Use energy with 8.4, sufficient to consider one non-KE term
	<i>x</i> = 45	A1	
		M1	Using appropriate suvat
	T = 10.714210.7 (3 s. f.)	A1	cao
		4	
		19	

4762

PMT

Q 2		mark	notes
(a)	$\stackrel{v \mathrm{m}\mathrm{s}^{-1}}{\bigstar} \stackrel{V \mathrm{m}\mathrm{s}^{-1}}{\longrightarrow} \stackrel{\mathbf{i}}{\longrightarrow}$		
	C 0.004 kg B 0.060 kg		
	Energy: $\frac{1}{2} \times 0.004 \times v^2 + \frac{1}{2} \times 0.060 \times V^2 = 0.8$	M1	Use of KE in two terms in an equation.
	$v^2 + 15V^2 = 400$	A1	Any form
	PCLM in i direction: $0.06V - 0.004v = 0$ v = 15V Solving $(15V)^2 + 15V^2 = 400$	M1 A1 M1	PCLM. Accept sign errors. Any form Valid method for elimination of v or V from a linear and a quadratic
	so $V^2 = \frac{400}{240} = \frac{5}{3}$ and $\mathbf{V} = \sqrt{\frac{5}{3}}\mathbf{i}$	A1	Accept 1.29099i Accept no direction
	$\mathbf{v} = -15\sqrt{\frac{5}{3}}\mathbf{i} \ (= -\sqrt{375}\mathbf{i})$	F1 A1 8	Accept – 19.3649i Accept no direction Second answer follows from first (Relative) directions indicated - accept diagram. Both speeds correct.
(b) (i)	W is work done by resistances on car		
	$\frac{1}{2} \times 800 \times (12^2 - 30^2) = -800 \times 9.8 \times 20 + W$	M1	Use of WE. Must have KE, W and GPE. Allow -W
	W 145 (00	B1 A1	Both KE terms. Accept sign error All correct with W or -W
	$w = -145\ 600$ so 145 600 J done by car against resistances	A1	cao
		4	

F	M	1T

4762

Mark Scheme

0.1		1	
Q 2		mark	notes
(ii)	either	D.	
	The slope is $18 \times 25 = 450$ m long	BI	
	$\frac{800 \times 9.8 \times 20 + 750 \times 450}{25}$	M1	Use of $P = (Work done) / (elapsed time)$ used for at least one work done term
		M1	WD is force \times distance used for at least one force
		A1	Allow only sign errors both terms
	= 19 772 W	A1	cao.
	or		
	The angle of the slope is $\arcsin(1/22.5)$	B1	
	$\left(800\times9.8\times\frac{1}{22.5}+750\right)\times18$	M1	Use of $P = Fv$ used for at least one term
		M 1	Attempt at weight component
		A1	Allow only sign errors both terms
	= 19 772 W	A1	cao.
		5	
		17	

4762

Q 3		mark	notes
(i)	Horizontal $X - 50 = 0$ Vertical: $R - Y - 45 = 0$	B1 B1 2	Any form Any form
(ii)	a. c. moments about A $1 \times R = 3 \times 45$ so $R = 135$ so $135 - Y - 45 = 0$ and $Y = 90$	M1 E1 E1 3	Clearly shown Shown
(iii)	In analysis below all internal forces are taken as tensions	B1 B1 2	Correct arrow pairs for all internal forces Correct labels

Mark	Scheme
------	--------

Q 3		mark	notes
(iv)		M1 M1 M1	Equilibrium attempted at a pin-joint Equilibrium attempted at a 2 nd pin-joint Either Equilibrium equation for 2 nd direction at a pin-joint or 3 rd pin-joint considered
	At C	B1	At least 3 equations of resolution correct or follow through
	$\uparrow T_{\rm CD} \cos 30 - 45 = 0$ so $T_{\rm CD} = 30\sqrt{3}$		
	and force in CD is $30\sqrt{3}$ N (T)	A1	
	$\leftarrow T_{\rm BC} + T_{\rm CD} \cos 60 = 0 \text{ so } T_{\rm BC} = -15\sqrt{3}$		
	and force in BC is $15\sqrt{3}$ N (C)	F1	
	At D \downarrow T and 20 \downarrow T and 20 \downarrow O		
	$\checkmark I_{BD} \cos 50 + I_{CD} \cos 50 = 0$		
	so $T_{BD} = -50\sqrt{5}$	F 1	
	and force in BD is $30\sqrt{3}$ N (C)	1.1	
	$\leftarrow T_{\rm AD} + T_{\rm BD} \cos 60 - T_{\rm CD} \cos 60 - 50 = 0$		
	so $T_{\rm AD} = 50 + 30\sqrt{3}$		
	and the force in AD is $50 + 30\sqrt{3}$ N (T)	F1	
	At A		
	$\downarrow T_{AB} \cos 30 + 90 = 0 \text{ so } T_{AB} = -60\sqrt{3}$		
	and the force in AB is $60\sqrt{3}$ N (C)	Fl B1	At least 4 T/C correct
		10	
(v)	framework geometry and the 45 N.	E1	Resolve in two directions at C and obtain same results as in (iv) MIAI
	These are not changed so forces in CB and CD		
	are not changed	E1 2	
		19	

Mark Scheme

Q 4		mark	notes
(i)	(2, 2.5)	B1 1	Condone writing as a vector
(ii)	By symmetry, $\overline{y} = 2.5$ For \overline{x} : $\left(5h + \frac{1}{2} \times 5 \times 6\right)\overline{x} = 5h \times \left(-\frac{h}{2}\right) + \frac{1}{2} \times 5 \times 6 \times 2$ so $(5h+15)\overline{x} = -2.5h^2 + 30$ so $5(h+3)\overline{x} = 2.5(12-h^2)$	B1 M1 A1 A1 A1	Some justification needed These next 4 marks may be obtained from correct FT of their "2" from (i) 1 st term RHS correct (allow sign error) Either other term correct All correct
	and $\bar{x} = \frac{12 - h^2}{2(h+3)}$	E1 6	Clearly shown, including signs.
(iii)	Need $\bar{x} > 0$ So $\frac{12 - h^2}{2(h+3)} > 0$ Hence $12 - h^2 > 0$ Since $h > 0, \ 0 < h < 2\sqrt{3}$	M1 B1 A1 3	Allow $\overline{x} \ge 0$ or $= 0$ $2\sqrt{3}$ or $-2\sqrt{3}$ oe seen Accept only +ve root mentioned. WWW for signs Accept $h < 2\sqrt{3}$ as answer strict inequality for final A mark

Mark Scheme

4762

Q 4		mark	notes
Q4 (iv)	continued When $h = 3$, $\overline{x} = 0.25$ Let mag of vert force be <i>T</i> N a.c moments about axis thro' O $T \times 6 - 15 \times 0.25 = 0$ so $T = 0.625$ so 0.625 N	B1 M1 A1	Could be scored in (v) If moments about another point need all relevant forces. Allow sign errors. Condone use of 15g cao
		3	
(v)	Let magnitude of force be U N a.c. moments about axis thro' D $U \cos 30 \times 5 - 15 \times (3 + 0.25) = 0$ U = 11.25833 so 11.3 N (3 s. f.)	M1 B1 A1 A1 4	Each term must be a moment. If moments about another point need all relevant forces. Condone use of $15g$. moment of U (5 U cos30 or) oe (3 + 0.25) oe cao
		17	