4762 Mechanics 2

1	(a)

1 (a) (i)	Let vel of Q be $v \rightarrow 6 \times 1 = 4v + 2 \times 4$ $v = -0.5 \text{ so } 0.5 \text{ m s}^{-1}$ in opposite direction to R	M1 A1 A1 A1	Use of PCLM Any form Direction must be made clear. Accept – 0.5 only if + ve direction clearly shown	4
(ii)	Let velocities after be R: $v_R \rightarrow$; S: $v_S \rightarrow$ PCLM +ve $\rightarrow 4 \times 2 - 1 \times 3 = 2v_R + 3v_S$ $2v_R + 3v_S = 5$ NEL +ve \rightarrow $\frac{v_S - v_R}{-1 - 4} = -0.1$ so $v_S - v_R = 0.5$ Solving gives $v_R = 0.7 \rightarrow$ $v_S = 1.2 \rightarrow$	M1 A1 M1 A1 A1	PCLM Any form NEL Any form Direction not required Direction not required	
(iii)	R and S separate at 0.5 m s ⁻¹ Time to drop <i>T</i> given by $0.5 \times 9.8T^2 = 0.4$ so $T = \frac{2}{7}$ (0.28571) so distance is $\frac{2}{7} \times 0.5 = \frac{1}{7}$ m (0.142857m)	M1 B1 A1	Award cao for 1 vel and FT second FT their result above. Either from NEL or from difference in final velocities cao	6
(b)	before after $v \rightarrow u$ $v \rightarrow (-)ev$ KE loss is $\frac{1}{2}m(u^2 + v^2) - \frac{1}{2}m(u^2 + e^2v^2)$ $= \frac{1}{2}mu^2 + \frac{1}{2}mv^2 - \frac{1}{2}mu^2 - \frac{1}{2}me^2v^2$ $= \frac{1}{2}mv^2(1-e^2)$	B1 B1 M1 E1	Accept $v \rightarrow ev$ Attempt at difference of KEs Clear expansion and simplification of correct expression	
				4

2(i)	GPE is 1200 × 9.8 × 60 = 705 600 Power is (705 600 + 1 800 000) ÷ 120 = 20 880 W = 20 900 W (3 s. f.)	B1 M1 B1 A1	Need not be evaluated power is WD ÷ time 120 s cao	4
(ii)	Using $P = Fv$. Let resistance be R N 13500 = 18 F so $F = 750$ As v const, $a = 0$ so $F - R = 0$ Hence resistance is 750 N We require $750 \times 200 = 150\ 000\ J$ (= 150 kJ)	M1 A1 E1 M1 F1	Use of $P = Fv$. Needs some justification Use of WD = Fd or Pt FT their F	5
(iii)	$\frac{1}{2} \times 1200 \times (9^{2} - 18^{2})$ = 1200 × 9.8 × x sin 5 - 1500x Hence 145800 = 475.04846x so x = 306.91 so 307 m (3 s, f,)	M1 B1 M1 A1 A1 A1	Use of W-E equation with 'x' 2 KE terms present GPE term with resolution GPE term correct All correct cao	6
(iv)	P = Fv and N2L gives $F - R = 1200a$ Substituting gives P = (R + 1200a)v If $a \neq 0$, v is not constant. But P and R are constant so a cannot be constant.	B1 B1 E1 E1	Shown	
				4
3 (i) (A)	Let force be P a.c. moments about C $P \times 0.125 - 340 \times 0.5 = 0$ P = 1360 so 1360 N	M1 A1 A1	Moments about C. All forces present. No extra forces. Distances correct cao	<u>19</u> 3
(i) (<i>B</i>)	Let force be P c.w. moments about E $P \times 2.125 - 340 \times (2 - 0.5) = 0$ P = 240 so 240 N	M1 A1 A1	Moments about E. All forces present. No extra forces. Distances correct cao	3

(ii)	$Q\sin\theta \times 2.125 + Q\cos\theta \times 0.9$	M1	Moments expression. Accept $s \leftrightarrow c$.	
	~ ~	B1	Correct trig ratios or lengths	
	$=\frac{25.5Q}{13}+\frac{4.5Q}{13}$			
	$=\frac{30Q}{13}$ so $\frac{30Q}{13}$ N m	E1	Shown	
	$-\frac{13}{13}$ SO $\frac{13}{13}$ IN III	LI	Shown	3
				5
(iii)	We need $\frac{30Q}{13} = 340 \times 1.5$	M1	Moments equn with all relevant forces	
	so $Q = 221$	E1	Shown	
	Let friction be F and normal reaction R	21		
	Resolve \rightarrow			
	$221\cos\theta - F = 0$	M1		
	so $F = 85$	A1		
	Resolve ↑			
	$221\sin\theta + R = 340$	M1		
	so $R = 136$ $F < \mu R$ as not on point of sliding	A1		
		M1	Accept \leq or =	
	so 85<136µ	A1	Accept \leq . FT their <i>F</i> and <i>R</i>	
	so $\mu > \frac{5}{8}$	E1		
	$50 \mu > \frac{1}{8}$	EI		9
				18
				10
4 (i)	$4000\left(\overline{x}\right)$ $4800\left(30\right)$ $800\left(50\right)$	1.61		
	$4000\left(\frac{\overline{x}}{\overline{y}}\right) = 4800\left(\frac{30}{40}\right) - 800\left(\frac{50}{20}\right)$	M1	Any complete method for c.m.	
		A1	Either one RHS term correct or one component of	
			both RHS terms correct	
	so $\overline{x} = 26$	E1		
	$\overline{y} = 44$	A1		
			[SC 2 for correct \overline{y} seen if M 0]	
				4
(ii)	$(\overline{\mathbf{r}})$			
	$250\left(\frac{\overline{x}}{\overline{y}}\right)$	M1	Any complete method for c.m.	
	$= 110\binom{0}{55} + 40\binom{20}{0} + 40\binom{40}{20} + 20\binom{50}{40} + 40\binom{60}{60}$	B1	Any 2 edges correct mass and c.m. or any 4 edges	
			correct with mass and x or y c.m. coordinate	
			correct.	
		B1	At most one consistent error	
	$\overline{x} = 23.2$	E1		
	$\overline{y} = 40.2$	A1		
L		L		5

January 2010

(iii)	Q 110-40.2 40.2 G 40.2 N	B1	Indicating c.m. vertically below Q	
	Angle is $\arctan\left(\frac{23.2}{110-40.2}\right)$ = 18.3856 so 18.4° (3 s. f.)	B1 M1	Clearly identifying correct angle (may be implied) and lengths Award for $\arctan\left(\frac{b}{a}\right)$ where $b = 23.2$ and $a = 69.8$ or 40.2 or where $b = 69.8$ or 40.2 and $a = 23.2$. Allow use of their value for <i>y</i> only. cao	
(iv)	$10\left(\frac{\overline{x}}{\overline{y}}\right) = 2 \times 1.5 \times \begin{pmatrix} 26\\44 \end{pmatrix} + 7 \begin{pmatrix} 23.2\\40.2 \end{pmatrix}$	M1	Combining the parts using masses	4
	$\overline{x} = 24.04$ so 24.0 (3 s.f.) $\overline{y} = 41.34$ so 41.3 (3 s.f.)	B1 A1 A1 F1	Using both ends All correct cao FT their <i>y</i> values only.	5