4762 Mechanics 2

Q 1		Mark		Sub
(i)	either	3.41	H. C. T.	
	$m \times 2u = 5F$	M1 A1	Use of $I = Ft$	
	so $F = 0.4mu$ in direction of the velocity or	A1	Must have reference to direction. Accept diagram.	
		M1	Use of suvat and N2L	
	$a = \frac{2u}{5}$	A1	May be implied	
	so $F = 0.4mu$ in direction of the velocity	A1	Must have reference to direction. Accept diagram.	3
(ii)		M1	For 2 equns considering PCLM, NEL or Energy	3
	$PCLM \rightarrow 2um + 3um = mv_P + 3mv_Q$	IVII	1 of 2 equits considering FCLM, NEL of Energy	
	$NEL \rightarrow v_Q - v_P = 2u - u = u$			
	Energy $\frac{1}{2}m \times (2u)^2 + \frac{1}{2}(3m) \times u^2$			
	$= \frac{1}{2}m \times v_p^2 + \frac{1}{2}(3m) \times v_0^2$			
	2 P 2\ / Q	A1	One correct equation	
		A1	Second correct equation	
	Solving to get both velocities 3u	M1	Dep on 1 st M1. Solving pair of equations.	
	$v_Q = \frac{3u}{2}$	E1	If Energy equation used, allow 2 nd root discarded	
			without comment.	
	$v_P = \frac{u}{2}$	A1		
			[If AG subst in one equation to find other velocity,	
			and no more, max SC3]	6
(iii)	either			0
	After collision with barrier $v_Q = \frac{3eu}{2}$	B1	Accept no direction indicated	
	_			
	so $\to m \frac{u}{2} - 3m \frac{3eu}{2} = -4m \frac{u}{4}$	M1	PCLM	
		A1	LHS Allow sign errors. Allow use of $3mv_0$.	
		A1	RHS Allow sign errors	
	so $e = \frac{1}{3}$	A1		
	At the barrier the impulse on Q is given by			
	$\rightarrow 3m\left(-\frac{3u}{2}\times\frac{1}{3}-\frac{3u}{2}\right)$	M1	Impulse is $m(v - u)$	
		F1	$\pm \frac{3u}{2} \times \frac{1}{3}$	
	so impulse on Q is $-6mu \rightarrow$	F1	Allow \pm and direction not clear. FT only e .	
	so impulse on the barrier is $6mu \rightarrow$	A1	cao. Direction must be clear. Units not required.	
		18		9
L	<u> </u>	10		l

ary 2009
ıa

Q 1	continued	mark		sub
(iii)	or After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$	B1		
	Impulse – momentum overall for Q $\rightarrow 2mu + 3mu + I = -4m \times \frac{u}{4}$	M1	All terms present All correct except for sign errors	
	$I = -6mu$ so impulse of $6mu$ on the barrier \rightarrow	A1 A1	Direction must be clear. Units not required.	
	Consider impact of Q with the barrier to give speed v_Q after impact			
	$\rightarrow \frac{3u}{2} \times 3m - 6mu = 3mv_{Q}$	M1 F1	Attempt to use I - M	
	so $v_Q = -\frac{u}{2}$	F1		
	$e = \frac{u}{2} \div \frac{3u}{2} = \frac{1}{3}$	A1	cao	
				9

Q 2		Mark		Sub
(i)		Wark		Sub
(1)	$R = 80g\cos\theta$ or $784\cos\theta$	B1	Seen	
	$F_{\max} = \mu R$	M1		
	so $32g \cos \theta$ or $313.6\cos \theta$ N	A1		
	328 6030 01 313.06030 11	AI		3
(ii)				
	Distance is 1.25	D1		
	Distance is $\frac{1.25}{\sin \theta}$	B1		
	WD is $F_{max}d$	M 1		
	so $32g\cos\theta \times \frac{1.25}{\sin\theta}$	E1	Award for this or equivalent seen	
			The man for this or equivalent seem	
	$=\frac{392}{\tan\theta}$			
	an heta			2
(iii)				3
(111)	Δ GPE is mgh	M1		
	so $80 \times 9.8 \times 1.25 = 980 \text{ J}$	A1	Accept 100g J	
				2
(iv)				
	either $P = Fv$	M1		
	so $(80g \sin 35 + 32g \cos 35) \times 1.5$	B1	Weight term	
	50 (00g Sili 55 + 52g C0555) X1.5	A1	All correct	
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	
	or			
	$P = \frac{\text{WD}}{\Delta t}$	M1		
		IVII		
	so $\frac{980 + \frac{392}{\tan 35}}{\left(\frac{1.25}{\sin 35}\right) \div 1.5}$			
	so $\frac{\tan 35}{(\cos 3)}$	B1	Numerator FT their GPE	
	$\left(\frac{1.25}{1.25}\right) \div 1.5$	B1	Denominator	
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	4
(v)	either			4
(,,	Using the W-E equation	M1	Attempt speed at ground or dist to reach required	
			speed. Allow only init KE omitted	
	$0.5 \times 80 \times {}^{2} \times 0.5 \times 80 \times {}^{(1)}^{2} \times 0.5 \times 80 \times {}^{(1)}$	D1	WE (some Allows allows and FT form (in)	
	$0.5 \times 80 \times v^2 - 0.5 \times 80 \times \left(\frac{1}{2}\right)^2 = 980 - \frac{392}{\tan 35}$	B1	KE terms. Allow sign errors. FT from (iv).	
	` ,	B1	Both WD against friction and GPE terms. Allow	
			sign errors. FT from parts above.	
		A1	All correct	
	v = 3.2793 so yes	A1	CWO	
	or N2L down slope	M1	All forces present	
	a = 2.409973	A1	7 m rorces present	
	distance slid, using <i>uvast</i> is 1.815372	A1		
	vertical distance is 1.815372× sin35	M1	valid comparison	
	= 1.0412 < 1.25 so yes	A1	CWO	_
		17		5
		17		

Q3		Mark		Sub
(i)				
		M1	Correct method for \overline{y} or \overline{z}	
		B1 M1	Total mass correct	
	(20)	MH	$15\cos\alpha$ or $15\sin\alpha$ attempted either part	
	$\overline{y}: 250 \times 4 + 125 \left(8 + \frac{30}{2} \cos \alpha \right) = 375 \overline{y}$	B1	$\left(8 + \frac{30}{2}\cos\alpha\right)$	
		B1	250×4	
	$\overline{y} = \frac{28}{3} = 9\frac{1}{3}$	E1	Accept any form	
	\overline{z} : $(250 \times 0+) 125 \times \frac{30}{2} \sin \alpha = 375 \overline{z}$	B1	LHS	
	$\overline{z} = 3$	E1		8
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from	E1		
	table	E1	[Award E1 for $9\frac{1}{3} > 8$ seen or 'the line of action of the weight is outside the base]	2
(iii)				
	c.m. new part is at $(0, 8 + 20, 15)$	M1	Either y or z coordinate correct	
		M1	Attempt to 'add' to (i) or start again. Allow mass error.	
	$375 \times \frac{28}{3} + 125 \times 28 = 500\overline{y} \text{ so } \overline{y} = 14$	E1		
	$375 \times 3 + 125 \times 15 = 500\overline{z} \text{ so } \overline{z} = 6$	E1		
	373 A 3 1 123 A 13 = 300 \(\cdot \c			4
(iv)				
	Diagram	B1 B1	Roughly correct diagram Angle identified (may be implied)	
	Angle is $\arctan \frac{6}{14}$	M1	Use of tan. Allow use of 14/6 or equivalent.	
	$= 23.1985$ so 23.2° (3 s. f.)	A1	cao	_
		18		4
		-	1	1

4762

Q 4		mark		sub
(a) (i)	Let the \uparrow forces at P and Q be $R_{\rm P}$ and $R_{\rm Q}$ c.w. moments about P $2 \times 600 - 3R_{\rm Q} = 0$ so force of 400 N \uparrow at Q a.c. moments about Q or resolve $R_{\rm P} = 200$ so force of 200 N \uparrow at P	M1 A1 M1 A1	Moments taken about a named point.	4
(ii)	$R_{\rm P} = 0$ c.w. moments about Q $2L-1 \times 600 = 0$ so $L = 300$	B1 M1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_p = 0$ or R_p not evaluated.	3
(b) (i)	$\cos \alpha = \frac{15}{17}$ or $\sin \alpha = \frac{8}{17}$ or $\tan \alpha = \frac{8}{15}$ c.w moments about A $16 \times 340 \cos \alpha - 8R = 0$ so $R = 600$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
(ii)	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	Must have 600 (or <i>R</i>) and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	2
(iii)	B \downarrow 340cos $\alpha + T_{BC}$ cos $\alpha = 0$ so $T_{BC} = -340$ (Thrust of) 340 N in BC C $\rightarrow T_{BC}$ sin $\alpha - T_{AC}$ sin $\alpha = 0$ so $T_{AC} = -340$ (Thrust of) 340 N in AC	M1 A1 F1	Equilibrium at a pin-joint	2
	B $\leftarrow T_{AB} + T_{BC} \sin \alpha - 340 \sin \alpha = 0$ so $T_{AB} = 320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1	Method for $T_{\rm AB}$ [Award a max of 4/6 if working inconsistent with diagram]	6