Q				
1		mark		Sub
(i)	16 = 0.4v so 40 m s ⁻¹	M1 A1	Use of $I = \Delta mv$	2
(ii)	PCLM \uparrow + ve $0.4 \times 32 - 0.6u = 0.4v_p + 0.6 \times 4$ NEL \uparrow +ve $\frac{4 - v_p}{-u - 32} = -0.1$ Solving u = 18	M1 A1 M1 A1	Use of PCLM Any form Use of NEL. Allow sign errors. Any form Must be obtained from a pair of correct equations. If given $u = 18$ used then $v_P = -1$ must be obtained from 1 equation and both values tested in the second equation	
	$v_{\rm p} = -1$ so 1 m s ⁻¹ downwards	A1 A1	cao. Accept use of given $u = 18$ cao	7
(iii)	Considering the momenta involved $0.5 \binom{-3.6}{5.2} = 0.2 \binom{3}{4} + 0.3 \mathbf{v}_{\mathrm{D}}$ $\mathbf{v}_{\mathrm{D}} = \binom{-8}{6} \text{ so } a = -8 \text{ and } b = 6$ Gradients of the lines are $\frac{4}{3}$ and $\frac{6}{-8}$ Since $\frac{4}{3} \times \frac{6}{-8} = -1$, they are at 90°	M1 B1 B1 A1 A1 A1 E1	PCLM applied. May be implied. LHS momentum of C correct Complete equation. Accept sign error. cao cao Any method for the angle Clearly shown	8
				17

0				
Q 2		mark		Sub
(i)	Moments about C			
	$240 \times 2 = 3R_{\rm D}$	M1	Moments about C or equivalent. Allow 1 force omitted	
	$R_{\rm D} = 160 \text{ so } 160 \text{ N}$	A1		
	Resolve vertically			
	$R_{\rm C} + R_{\rm D} = 240$	M1	Resolve vertically or moments about D or equivalent.	
	$R_{\rm C} = 80 \text{ so } 80 \text{ N}$	F1	All forces present. FT from thei r R_D only	
<i>(</i> '')				4
(ii) (A)	Moments about D			
(11)	$240 \times 1 = 4T \sin 40$	M1	Moments about D or equivalent	
		M1	Attempt at resolution for RHS	
	T = 93.343 so 93.3 N (3 s. f.)	A1 A1	RHS correct	
	1 – 93.343 80 93.3 14 (3 8.1.)	А		4
(ii)				
(B)	In equilibrium so horizontal force			
	needed to balance cpt of T . This must be		Need reference to horizontal force that	
	friction		must	
	and cannot be at C.		come from friction at D.	1
(iii				1
)				
(A)	Moments about B			
	$3 \times 240 \times \cos 30 = 6P$	M1	All terms present, no extras. Any resolution required attempted.	
			resolution required attempted.	
	$P = 60\sqrt{3} \ (103.92)$	E1	Accept decimal equivalent	
	<i>P</i> inclined at 30° to vertical	B1	Seen or equivalent or implied in (iii) (A) or	
			(B).	
	Resolve horizontally. Friction force F			
	$F = P \sin 30$	M1	Resolve horizontally. Any resolution	
			required attempted	
	so $F = 30\sqrt{3} (51.961)$	A1	Any form	
				5

January

(iii				
(B)	Resolve vertically. Normal reaction <i>R</i>			
	$P\cos 30 + R = 240$	M1	Resolve vertically. All terms present and resolution attempted	
		A1		
	Using $F = \mu R$	M1		
	$\mu = \frac{30\sqrt{3}}{240 - 60\sqrt{3} \times \frac{\sqrt{3}}{2}}$	A1	Substitute their expressions for F and R	
	$= \frac{30\sqrt{3}}{240-90} = \frac{\sqrt{3}}{5} = 0.34641 \text{ so } 0.346 \text{ (3}$ s. f.)	A1	cao. Any form. Accept 2 s. f. or better	
	·			5
				19

Q 3		mark		Sub
(a) (i)	$80\left(\frac{\overline{x}}{\overline{y}}\right) = 48\binom{6}{2} + 12\binom{1}{-3} + 20\binom{11}{9}$ $80\left(\frac{\overline{x}}{\overline{y}}\right) = \binom{520}{240}$	M1	Correct method for c.m.	
	$80\left(\overline{y}\right)^{2}\left(240\right)$	B1 B1	Total mass correct One c.m. on RHS correct [If separate components considered, B1 for 2 correct]	
	$\overline{x} = 6.5$ $\overline{y} = 3$	E1 A1	cao	5
(ii)	Consider x coordinate $520 = 76 \times 6.4 + 4x$	M1 B1	Using additive principle o. e. on <i>x</i> cpts Areas correct. Allow FT from masses from (i)	
	so $x = 8.4$	A1	cao	3
(iii)	<i>y</i> coordinate is 1 so we need $240 = 76\overline{y} + 4 \times 1$ and $\overline{y} = 3.10526$ so 3.11 (3 s. f.)	B1 M1 A1	Position of centre of square cao	3
(b) (i)	Moments about C $4R = 120 \times 3 + 120 \times 2$ so $4R = 600$ and $R = 150$	M1 E1	Moments equation. All terms present	2
(ii)	A T_{AB} T_{EB} T_{DB} T_{DC} T_{BC} T_{DC}	B1		
	A \(\) 150 + $T_{AE} \cos 30 = 0$ $T_{AE} = -100\sqrt{3} \text{ so } 100\sqrt{3} \text{ N (C)}$ E \(\) 120 + $T_{AE} \cos 30 + T_{EB} \cos 30 = 0$ $T_{EB} = 20\sqrt{3} \text{ so } 20\sqrt{3} \text{ N (T)}$	M1 A1 M1 F1	Equilibrium at a pin-joint Any form. Sign correct. Neglect (C) Equilibrium at E, all terms present Any form. Sign follows working. Neglect (T). T/C consistent with answers	

January

4762 Mark Scheme 2006

				6
(iii)	Consider → at E, using (ii) gives ED as thrust	E1	Clearly explained. Accept 'thrust' correctly deduced from wrong answers to (ii).	1
				20

Q				
4		mark		Sub
(i)	$\frac{0.5 \times 20 \times 8^2 - 0.5 \times 20 \times 5^2 + 510}{6}$	M1	Use of $P = WD/t$	
	= 150 W	B1 A1 A1	Δ KE. Accept ±390 soi All correct including signs	4
(ii) (A)	$20g \times \frac{3}{5}x - 5gx$	M1	Use of <i>mgh</i> on both terms	
	7gx (68.6x) gain	B1 A1 A1	Either term (neglecting signs) ±7 gx in any form. cao	4
(B)	11 <i>gx</i>	B1		1
(C)	$0.5 \times 25 \times 4^2 = 7gx + 11gx = 18gx$	M1	Use of work-energy equation. Allow 1 RHS term omitted.	
	x = 1.13378 so 1.13 m (3 s. f.)	B1 A1	KE term correct cao. Except follow wrong sign for $7gx$ only.	3
(iii				
)	either $0.5 \times 35 \times v^2 - 0.5 \times 35 \times 16$ $= 15g \times 0.5 - 11g \times 0.5 - 12g \times 0.5$ $v^2 = 13.76 \text{ so } v = 3.70944$	M1 B1 A1	Use of work-energy. KE, GPE and WD against friction terms present. Δ GPE correct inc sign (1.5g J loss) All correct	
	so 3.71 m s ⁻¹ (3 s. f.)	A1	NOL in 1 on 2 assortions. All terms	
	15g - T = 15a $T - 12g - 11g = 20aso a = -2.24$	M1 A1	N2L in 1 or 2 equations. All terms present cao	
	$v^2 = 4^2 + 2 \times (-2.24) \times 0.5$ so 3.71 m s ⁻¹ (3 s. f.)	M1 A1	Use of appropriate (sequence of) <i>uvast</i> cao	
				16
				10