

General Certificate of Education (A-level) June 2011

Mathematics

MM2B

(Specification 6360)

Mechanics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM2B

MM2B (cont)

MM2B (cont)

Q	Solution	Marks	Total	Comments
3(a)	$\begin{aligned} & \mathbf{a}=\frac{\mathrm{d} v}{\mathrm{~d} t} \\ & \mathbf{a}=-8 \mathrm{e}^{-2 t} \mathbf{i}+(6-6 t) \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	M1: Differentiating with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1: Correct i component. A1: Correct \mathbf{j} component.
(b)(i)	$\begin{aligned} & \text { Using } \mathbf{F}=m \mathbf{m} \\ & \mathbf{F}=5 \times\left\{-8 \mathrm{e}^{-2 t} \mathbf{i}+(6-6 t) \mathbf{j}\right\} \\ & =-40 \mathrm{e}^{-2 t} \mathbf{i}+(30-30 t) \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	M1: Multiplying their acceleration by 5 , even if not a vector. A1: Correct expression.
(ii)	Magnitude of \mathbf{F} is $\left\{(-40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two nonzero terms. Must add terms and square root. Condone $\left\{(40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$
	$=50$	A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
(c)	When \mathbf{F} acts due west, \mathbf{j} component is zero $\begin{aligned} & 30-30 t=0 \\ & t=1 \end{aligned}$	M1 A1	2	M1: Putting \mathbf{j} component equal to zero. A1: Correct time.
(d)	$\mathbf{r}=-2 \mathrm{e}^{-2 t} \mathbf{i}+\left(3 t^{2}-t^{3}\right) \mathbf{j}+\mathbf{c}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		M1: Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1: Correct i component. A1: Correct \mathbf{j} component. Condone lack of $+\mathbf{c}$
	When $t=0, \mathbf{r}=6 \mathbf{i}+5 \mathbf{j} \therefore \mathbf{c}=8 \mathbf{i}+5 \mathbf{j}$	dM1		dM 1 : Finding \mathbf{c} using $6 \mathbf{i}+5 \mathbf{j}$ and $\mathrm{e}^{0}=1$.
		A1	5	A1: Correct position vector.
	Total		14	

MM2B (cont)

Q	Solution	Marks	Total	Comments
4(a)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	B1: Two weights correct and in correct relative positions. B1: Two upward reaction forces, labelled differently. Note all forces must be shown as arrows and have labels. Condone use of $g=9.81$ for calculating weights.
(b)	Taking moments about C $3 \times 17 g+2.6 \times 65 g=44 g \times d$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		B1: Seeing 2.6. M1: Three term moment equation including $17 \mathrm{~g}, 65 \mathrm{~g}$ and 44 g or 17,65 and 44 , with different distances for the 17 g and 65 g . A1: Correct equation.
	$\begin{aligned} & 44 d=220 \\ & d=5 \end{aligned}$ Distance is $5-4.6=0.4 \mathrm{~m}$	A1	4	A1: Correct final answer.
	Alternative $R_{C}=38 \mathrm{~g}$ Taking moments about D $\begin{aligned} & 38 g(4.6+x)=65 g(2+x)+17 g(1.6+x) \\ & 174.8-130-27.2=44 x \\ & x=0.4 \end{aligned}$	(B1) (M1) (A1) (A1)		Could take moments about any other point
(c)	Gravitational force (centre of mass or weight) at mid-point (or centre) of the plank	E1	1	E1: Correct explanation.
	Total		7	
5(a)	$\begin{aligned} 90 \mathrm{~km} \mathrm{~h}^{-1} & =90 \times \frac{1000}{3600} \mathrm{~m} \mathrm{~s}^{-1} \\ & =25 \mathrm{~m} \mathrm{~s}^{-1} \quad \text { AG } \end{aligned}$	B1	1	B1: Must see $\frac{1000}{3600}$ or $\frac{1000}{60^{2}}$.
(b)	Resistance is 5000 N $\begin{aligned} \text { Using power } & =\text { force } \times \text { velocity } \\ & =5000 \times 25 \end{aligned}$	B1 M1		B1: Obtaining 5000. M1: Using $P=F v$ with 25 and their F.
	$=125 \mathrm{~kW}$	A1	3	A1: Correct final answer, must be in kW . $125 \mathrm{~W} \text { or } 125000 \mathrm{~W} \quad \text { B1M1 }$ $125 \text { B1M1A1 }$
	Total		4	

MM2B (cont)

Q	Solution	Marks	Total	Comments
7(a)	Resolving vertically $T \cos 30+20 \cos 50=4 g$	$\begin{aligned} & \text { M1A1 } \\ & \text { A1 } \end{aligned}$		M1: Three terms, which must include $4 g$, $T \cos \theta$ or $T \sin \theta$ and $20 \cos \theta$ or $20 \sin \theta$, where $\theta=30,40,50$ or 60 . A1: Correct terms A1: Correct equation
	$\begin{aligned} & T \cos 30=26.344 \\ & T=30.4 \mathrm{~N} \end{aligned}$	A1	4	A1: Correct final answer. Accept 30.4 or AWRT 30.42. Accept 30.4 or 30.5 or AWRT 30.45 from $g=9.81$.
(b)	Horizontally: $\frac{m v^{2}}{r}=20 \cos 40+T \cos 60$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		M1: Three terms, which must include $\frac{m v^{2}}{r}$ or $\frac{4 \times 5^{2}}{r}, T \cos \theta$ or $T \sin \theta$ and $20 \cos \theta$ or $20 \sin \theta$, where $\theta=30,40,50$ or 60. A1F: Correct equation. May include T, m and v.
	$\frac{4 \times 5^{2}}{r}=30.53$	dM1		dM 1 : Substitution of values for T, m and v. Equation of form $\frac{4 \times 5^{2}}{r}=$ number
	$\begin{aligned} r & =3.27537 \\ & =3.28 \end{aligned}$	A1	4	A1: Correct answer. Accept 3.27 or 3.28 or AWRT 3.28. Accept 3.27 or AWRT 3.27 from $g=$ 9.81. Note: Do not accept $\frac{m v^{2}}{r}=30.4$ or similar.
	Total		8	

MM2B (cont)

Q	Solution	Marks	Total	Comments
8(a)	Using conservation of energy (lowest and highest points)			
	$\frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g(2 a)$	M1A1		M1: Equation for conservation of energy with two KE terms and one or two PE terms. May see m or 0.3. A1: Correct equation.
	$u^{2}=v^{2}+4 a g$			
	For complete revolutions, $v>0$ $\therefore u^{2}>4 a g$			
	$u>2 \sqrt{a g} \quad \text { AG }$	A1	3	A1: Correct result with statement of $v>0$ and some intermediate working including $4 a g$ term.
	Use of PE at top and KE at B	(M1)		
	Correct PE and KE Correct deduction including inequality	$\begin{aligned} & \text { (A1) } \\ & \text { (A1) } \end{aligned}$		
(b)(i)	C of Energy			
	$\frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g a(1+\sin \theta)$	M1A1		M1: Equation for conservation of energy with two KE terms and one or two PE terms including a $\sin \theta$. May see m or 0.3 .
	$\begin{aligned} v^{2} & =\left(\sqrt{\frac{9}{2} a g}\right)^{2}-2 g a(1+\sin \theta) \\ & =\frac{5}{2} a g-2 a g \sin \theta \end{aligned}$			
	Resolve radially $\pm R=-m g \sin \theta+\frac{m v^{2}}{a}$	M1A1		M1: Three term equation from resolving radially. Correct three terms, but condone signs and replacement of sin by cos. A1: Correct equation. May see m or 0.3.
	$\begin{aligned} & =-m g \sin \theta+\frac{5}{2} m g-2 m g \sin \theta \\ & =-3 m g \sin \theta+\frac{5}{2} m g \\ & =\left(\frac{3}{4}-\frac{9}{10} \sin \theta\right) g \text { OE (must include } g \text {) } \end{aligned}$	A1	5	A1: Simplified correct final answer. Condone $\left(\frac{9}{10} \sin \theta-\frac{3}{4}\right) g$
(ii)	When this reaction is zero, $\left(\frac{3}{4}-\frac{9}{10} \sin \theta\right) g=0$	M1		M1: Putting their reaction equal to zero.
	$\sin \theta=\frac{5}{6}$			
	θ is 56.4° above horizontal	A1	2	A1: Correct angle. Accept AWRT 56.44.
	Total		10	

MM2B (cont)

