1	(i)	** * 1 * 2 * * * * * * * * * * * * * * *	D.1		
1	(i)	Vertical motion: initial speed $40 \sin \alpha$	B1		
		$h = (40\sin\alpha)t - \frac{1}{2}gt^2$			
		$h = 0 \Rightarrow t = 0 \text{ or } \frac{2 \times 40 \times \sin \alpha}{g}$	M1	Correct expression for h must be seen. Condone omission of the case $t = 0$	
		$\Rightarrow T = \frac{80\sin\alpha}{g}$	E1	Perfect argument (but still condone omission of $t = 0$)	
		Alternative			
		Vertical motion: initial speed $40 \sin \alpha$	(B1)		
		$v = 40\sin\alpha - gt$			
					_
		When $v = 0$, $t = \frac{T}{2}$	(M1)	Correct expression for <i>v</i> must be seen	
		$\Rightarrow T = \frac{80\sin\alpha}{g}$	(E1)	Perfect argument	_
		Horizontal motion: initial speed $40\cos\alpha$	B1		
		$R = 40\cos\alpha \times T$	M1	There must be evidence of intention to use <i>T</i>	
		$\Rightarrow R = \frac{3200 \sin \alpha \cos \alpha}{g}$	E1	Perfect argument	
			[6]		
	(ii)	$\alpha = 30^{\circ}$:			
		$T = \frac{80\sin 30^{\circ}}{9.8} \simeq 4.08$			
		$\Rightarrow R = \frac{3200 \times \sin 30^{\circ} \times \cos 30^{\circ}}{9.8} = 141.4$	B1	Both answers required for the mark. Evidence of substitution required	
		$\alpha = 45^{\circ}$: $T = 5.77$	B1		

	$\alpha = 45^{\circ}$: $R = 163.3$	B1	Accept 3 significant figures	
		[3]		
(iii)	The standard model is not accurate; 125 is much less than 141.4	B1	The comment must be based on the figures given in the question	
		[1]		
(iv)	Horizontal motion: $s = ut + \frac{1}{2}at^2$	M1	Use of correct formula	
	$x = 40\cos 30^{\circ} \times t - \frac{1}{2} \times 2 \times t^{2}$ $x = 40t\cos 30^{\circ} - t^{2}$ Flight time = 4.08 s	A1		
	$R = 40 \times \cos 30^{\circ} \times 4.08 - \frac{1}{2} \times 2 \times 4.08^{2}$	M1		
	R = 124.7 This is close to the experimental result of 125 m	E1	A comparison with 125 m is required	
		[4]		

(v)	When $\alpha = 45^{\circ}$, $T = 5.77$	M1	Use of correct formula, with substitution for α and T . FT their T from (ii) but not 4 SC1 for substituting for T but using 30° for α	
	$R = 40 \times \cos 45^{\circ} \times 5.77 - \frac{1}{2} \times 2 \times 5.77^{2}$			
	R = 129.9	A1		
	129.9 m is not very close to 135 m so the model is not very accurate for this angle.	В1	Comparison of their 129.9 with 135 If 4.08 used for <i>T</i> and answer 98.8 obtained for <i>R</i> allow FT for this mark Allow argument that to get to 135m takes 6.07 s which is greater than 5.77 s	
		[3]		
(vi)	Allow for resistance in the vertical direction as well	B1	Any sensible comment, but do not award a mark for "Allow for air resistance" without mention of the vertical direction.	
		[1]		

2		mark	notes
(i) (A)	$x = Ut\cos 68.5^{\circ}$	B1 1	
(i) (B)	$y = Ut\sin 68.5^\circ - 4.9 \times t^2$	M1	Allow ' u ' = U . Allow $s \leftrightarrow c$. Allow g as g , ± 9.8 , ± 9.8 , ± 9.8 , ± 10 . Allow ± 2 .
		A1	Accept not 'shown'. Do not allow +2. Allow e.g $+0.5 \times (-9.8) \times t^2$ instead of $-4.9t^2$. Accept g not evaluated
(ii)	either At D, $y = 0$ so $U \sin 68.5^{\circ}T - 4.9 \times T^{2} = 0$ $\Rightarrow T (U \sin 68.5^{\circ} - 4.9T) = 0$ so $T = 0$ (at C) or $T = \frac{U \sin 68.5^{\circ}}{4.9}$ (at D)	M1 M1	Equating correct y to 0 or their y to correct value. Attempting to factorise (or solve). Allow $\div T$ without comment. Properly shown. Accept no ref to $T = 0$. Accept $T = 0$ given as well without comment.
	or $Use (i)(A) and put x = 10 with t = T to get UT \cos 68.5^{\circ} = 10$	M1 M1 E1 B1	Find time to top Double time to the top
(iii)	Eliminating T from the results in (ii) gives $U \cos 68.5^{\circ} \times \frac{U \sin 68.5^{\circ}}{4.9} = 10$ so $U = 11.98729$ so 12.0 (3 s. f.)	M1 M1 E1	Substituting, using correct expressions or their expressions from (ii). Attempt to solve for U^2 or U . Some evidence seen. e.g. $142.8025 < U^2 < 145.2025$ with clear statement, or 11.9 seen with clear statement or 11.98 seen. Accept 11.98 seen for full marks.
(iv)	continued		
Ph	ysicsAndMathsTutor.com		

(iv)	Require $Ut \sin 68.5^{\circ} - 4.9t^{2} = -2$ Solving $4.9t^{2} - Ut \sin 68.5^{\circ} - 2 = 0$ t = -0.1670594541, 2.4431591 (Using $12: -0.1669052502, 2.445478886)$ Require $U\cos 68.5^{\circ} \times 2.44 10$ = 0.7336 so 0.734 m (3 s. f.) (Using 12 consistently, 0.7552 so 0.755 (3 s. f.))	M1 M1 A1 M1 A1	Equating correct y to -2 or their y to correct value. Allow use of U , 11.987 or 12. Allow implicit '= 0' Dep on 1 st M1. Attempt to solve a 3 term quadratic to find at least the +ve root. Allow if two correct roots seen WW. Accept only + ve root given Alternative method of e.g. finding time to highest point and then time to the ground. M1 all times attempted, at least one by a sound method. M1 both methods sound and complete. A1. Dep on first M1. Allow their expression for x . Allow ' -10 ' omitted. cao. Accept $0.73 \le x \le 0.76$
(v)	Eliminate t from (i) (B) using $t = \frac{x}{U \cos 68.5^{\circ}}$ from (i)(A) so $y = x \tan 68.5^{\circ} - \frac{4.9x^2}{U^2 (\cos 68.5^{\circ})^2}$ We require $y = 0$ when $x = 10$ so $U = 11.98729$ so 12.0 (3 s. f.)	M1 E1 M1 E1 4	May be implied. FT their (i). Clearly shown. Must see attempt to solve. Or use $x = 10.73$ when $y = -2$. Must see evidence of fresh calculation or statement that they have now got the same expression for evaluation.

3 (i)	y(0) = 1	B1		1
(ii)	Either $\frac{1}{2}(20+5)-5=7.5$	M1 A1	Use of symmetry e.g. use of $\frac{1}{2}(20+5)$	
	or	A1 M1 A1	7.5 cao Att pt at y' and to solve y' = 0 $k(15 - 2x)$ where $k = 1$ or $\frac{1}{100}$	
	$y(7.5) = \frac{1}{100} (100 + 15 \times 7.5 - 7.5^{2})$	A1 M1	7.5 cao, seen as final answer FT their 7.5	
	$=\frac{25}{16}$ (1.5625) so 1.5625 m	E1	A [SC2 only showing 1.5625 leads to $x = 7.5$]	5

(iii)	$4.9t^2 = \frac{25}{16} (1.5625)$	M1	Use of $s = ut + 0.5at^2$ with $u = 0$. Condone use of	
(111)	$4.9i - \frac{1}{16} (1.3023)$	1,11	$\pm 10, \pm 9.8, \pm 9.81$. If sequence of <i>suvat</i> used,	
			complete method required.	
		A1	In any method only error accepted is sign error	
	$t^2 = 0.31887$ so $t = \pm 0.56469$		January January Banana	
	Hence 0.565 s (3 s. f.)	E1	AG. Condone no reference to –ve value. www.	
			0.565 must be justified as answer to 3 s. f.	
(iv)	. 12.5	M1	or 25 / (2×0.56469)	3
	$\dot{x} = \frac{12.5}{0.56469} = 22.1359$			
		B1	Use of 12.5 or equivalent	
	so 22.1 m s ⁻¹ (3 s. f.))	E1	22.1 must be justified as answer to 3 s. f. Don't	
	F141		penalise if penalty already given in (iii).	
	Either	M1		
	Time is $\frac{20}{12.5} \times 0.56469$ s	IVII		
	so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	
	or			
	Time is $\frac{20}{22.1359}$ s	M1		
	= 0.903507 so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	
	or 7.5	M1		
	$(iii) + \frac{7.5}{\text{their } \dot{x}}$	IVII		
	so 0.904 s (3 s. f.)	A1	cao Accept 0.91 (2 s. f.)	
	30 0.704 3 (3 3. 1.)	711	cao / recept 0.51 (2 s. 1.)	5
(v)	$v = \sqrt{\dot{x}^2 + \dot{y}^2}$	M1	Must have attempts at both components	
	$\dot{y}^2 = 0^2 + 2 \times 9.8 \times \frac{25}{16}$ or	M1	Or equiv. $u = 0$. Condone use of	
	$\dot{y} = 0 + 9.8 \times 0.5646$		$\pm 10, \pm 9.8, \pm 9.81.$	
			Accept wrong s (or t in alternative method)	
	$=\frac{245}{8}$ (30.625) $\dot{y} = \pm 5.539$	A1	Or equivalent. May be implied. Could come from	
			(iii) $v^2 = u^2 + 2as$ used there. Award marks again.	
	so $v = \sqrt{490 + 30.625} = 22.8172$ m s ⁻¹			
	so 22.8 m s ⁻¹ (3 s. f.)	A1	cao. www	
, ,	A INT.			4
rnysi	¢sAndMathsTutor.com			18

4		Mark	Comment	Sub
	either			
	We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or their attempt at y to	
	We need 5.075 - 7.01 4.71		± 3.675 . If they attempt y, allow sign errors,	
			g = 9.81 etc. and $u = 35$.	
	Solving $4t^2 - 8t + 3 = 0$	M1*	Dependent. Any method of solution of a 3 term	
			quadratic.	
	gives $t = 0.5$ or $t = 1.5$	A1	cao. Accept only the larger root given	
		F1	Both roots shown and larger chosen provided	
			both +ve. Dependent on 1 st M1.	
			[Award M1 M1 A1 for 1.5 seen WW]	
	or	3.54		
		M1	Complete method for total time from motion in	
			separate parts. Allow sign errors, $g = 9.81$ etc.	
	Time to greatest height		Allow $u = 35$ initially only.	
	Time to greatest neight $0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
	$0 = 33 \times 0.28 = 9.8t \text{ so } t = 1$ Time to drop is 0.5	A1	Time for 2 nd part	
	total is 1.5 s	A1 A1	cao	
	total is 1.5 s	AI	Cao	
	then			
	Horiz distance is $35 \times 0.96t$	B1	Use of $x = u \cos \alpha t$. May be implied.	
	So distance is $35 \times 0.96 \times 1.5 = 50.4$ m	F1	FT their quoted <i>t</i> provided it is positive.	
	De la		The state of the s	6
		6		

5		Mark	Comment	Sub
	Method 1			
	$\uparrow v_{A} = 29.4 - 9.8T \qquad \downarrow v_{B} = 9.8T$	M1	Either attempted. Allow sign errors and $g = 9.81$ etc	
		A1	Both correct	
	For same speed $29.4 - 9.8T = 9.8T$	M1	Attempt to equate. Accept sign errors and $T = 1.5$ substituted in both.	
	so $T = 1.5$	E1	If 2 subs there must be a statement about equality	
	and $V = 14.7$	F1	FT T or V, whichever is found second	
	$H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^{2}$	M1	Sum of the distance travelled by each attempted	
	$+ 0. \times 9.8 \times 1.5^{2}$			
	= 44.1	A1	cao	
	Method 2			
	$V^{2} = 29.4^{2} - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$	M1	Attempts at V^2 for each particle equated. Allow sign errors, 9.81 etc	
			Allow h_1 , h_2 without $h_1 = H - h_2$	
		B1	Both correct. Require $h_1 = H - h_2$ but not an	
			equation.	
	$29.4^2 = 19.6H$ so $H = 44.1$	A1	cao	
	Relative velocity is 29.4 so	M 1	Any method that leads to T or V	
	$T = \frac{44.1}{1}$	E1		
	$1 - \frac{1}{29.4}$			
	Using $v = u + at$	M 1	Any method leading to the other variable	
	$V = 0 + 9.8 \times 1.5 = 14.7$	F1		
			Other approaches possible. If 'clever' ways seen,	
			reward according to weighting above.	
				7
		7		