1(i)	$(-\mathbf{i} + 16\mathbf{j} + 72\mathbf{k}) + (-80\mathbf{k}) = 8\mathbf{a}$ $\mathbf{a} = \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \text{m s}^{-2}$	M1 E1	Use of N2L. All forces present. Need at least the k term clearly derived	2
(ii)	$\mathbf{r} = 4(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) + 0.5 \times 16\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ $= 3\mathbf{i} + 4\mathbf{k}$	M1 A1 A1	Use of appropriate uvas <i>t</i> or integration (twice) Correct substitution (or limits if integrated)	3
(iii)	$\sqrt{3^2 + 4^2} = 5$ so 5 m	B1	FT their (ii) even if it not a displacement. Allow surd form	1
(iv)	$\arctan \frac{4}{3}$ = 53.130 so 53.1° (3 s. f.)	M1	Accept $\arctan \frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use $\arcsin 4/5$ or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors) cao	2
				8

2

mark Sub

(i) either

Need **j** cpt 0 so
$$18t^2 - 1 = 0$$

$$\Rightarrow t^2 = \frac{1}{18}$$
. Only one root as $t > 0$

Need not solve M1

E1 Must establish only one of the two roots is valid

Establish sign change in **j** cpt Establish only one root

B1 B1

A1

B1

v = 3 i + 36t j

M1 Differentiate. Allow i or j omitted

Need i cpt 0 and this never happens

E1 Clear explanation. Accept 'i cpt always there' or equiv

x = 3t and $y = 18t^2 - 1$

Eliminate *t* to give

$$y = 18\left(\frac{x}{3}\right)^2 - 1$$

so $y = 2x^2 - 1$

Award for these two expressions seen.

t properly eliminated. Accept any form and brackets M1missing

A1 ca

> 3 8

2

3

PhysicsAndMathsTutor.com

3	(i)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t \tag{2}$	M1	May be implied by either of the next two answers but not the final answer. Evidence of use of vectors in question necessary.
		Velocity $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \end{pmatrix} \left(= \begin{pmatrix} 2 - t \\ t \end{pmatrix} \right)$	A1	
		When $t = 8$, $\mathbf{v} = \begin{pmatrix} -6 \\ 8 \end{pmatrix}$	A1	May be implied by the final answer
		speed $\sqrt{(-6)^2 + 8^2} = 10 \text{ m s}^{-1}$	A1 [4]	Cao but condone no units Give SC2 for 10 without working
			r - 1	
	(ii)	$\mathbf{r} = \mathbf{r}_0 + \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	Use of correct equation with substitution. Condone omission of \mathbf{r}_0 Or equivalent equation
		$\mathbf{r} = \mathbf{r}_0 + \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ $\mathbf{r} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} \times 8 + \frac{1}{2} \times \begin{pmatrix} -1 \\ 1 \end{pmatrix} \times 8^2$	A1	Condone omission of \mathbf{r}_0 . Follow through for their value of \mathbf{v}
		$\mathbf{r} = \begin{pmatrix} -16 \\ 30 \end{pmatrix}$	A1	Cao but may be implied by a correct final answer.
		Distance = 34 m	A1	Allow for 35.77 from $\mathbf{r} = \begin{pmatrix} -16 \\ 32 \end{pmatrix}$ and 37.57 from $\mathbf{r} = \begin{pmatrix} -16 \\ 34 \end{pmatrix}$
			[4]	

(0) (0)		
When $t = 1$, $\mathbf{r} = \begin{pmatrix} 8 \\ 10 - 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix}$ $8\mathbf{i} + (10 - 2)\mathbf{j} = 8\mathbf{i} + 8\mathbf{j}$ Bearing OP is 045°	B1 F1	Accept column or $a\mathbf{i} + b\mathbf{j}$ notation May be implied Accept 45°. Accept NE and northeast. Condone $ \mathbf{r} $ given as well.
$\mathbf{r} = \begin{pmatrix} 8 \\ 20t - 6t^2 \end{pmatrix} [8\mathbf{i} + (20t - 6t^2)\mathbf{j}]$ The i cpt is always 8 so $\mathbf{v} \neq 0$ for any t	M1 A1 E1	Differentiating both components. Condone 1 error if clearly attempting differentiation. Must be a vector answer. Accept any correct argument e.g. based on i cpt never 0.
$t = \begin{pmatrix} 0 \\ 20 - 12t \end{pmatrix} [(20 - 12t)\mathbf{j}]$ $t = 0 \text{ when } t = \frac{20}{12} = \frac{5}{3}$ $t = \frac{5}{3} \text{ s } (1.67 \text{ s } (3 \text{ s. f.}))$	M1 F1	Differentiating as a vector. Condone 1 error if clearly attempting differentiation of their v . FT their v . cao. Condone obtained from scalar equation.
ı =	$\begin{pmatrix} 0 \\ 20 - 12t \end{pmatrix} [(20 - 12t)\mathbf{j}]$ 0 when $t = \frac{20}{12} = \frac{5}{3}$	e i cpt is always 8 so $\mathbf{v} \neq 0$ for any t $\begin{bmatrix} 0 \\ 20 - 12t \end{bmatrix} \begin{bmatrix} (20 - 12t)\mathbf{j} \end{bmatrix}$ M1 F1 O when $t = \frac{20}{12} = \frac{5}{3}$

				5
5 (i)		M1	Us of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$	
	$ \begin{pmatrix} 12 \\ 9 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + 4\mathbf{a} $ so $\mathbf{a} = \begin{pmatrix} 2.5 \\ 3 \end{pmatrix}$	A1	If vector a seen, isw.	
				2
(ii)	eit $\mathbf{r} = \begin{pmatrix} -1\\2 \end{pmatrix} + \begin{pmatrix} 2\\-3 \end{pmatrix} \times 4 + \frac{1}{2}\mathbf{a} \times 4^2$	M1 A1	For use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with their a. Initial position may be omitted. FT their a. Initial position may be omitted.	
	$\mathbf{r} = \begin{pmatrix} 27 \\ 14 \end{pmatrix} \text{so} \begin{pmatrix} 27 \\ 14 \end{pmatrix} \text{ m}$	A1	cao. Do not condone magnitude as final answer.	
	or	M1 A1 A1	Use of $\mathbf{s} = 0.5t(\mathbf{u} + \mathbf{v})$ Initial position may be omitted. Correct substitution. Initial position may be omitted. cao Do not condone mag as final answer. SC2 for $\binom{28}{12}$	
				3
(iii)	Using N2L $\mathbf{F} = 5\mathbf{a} = \begin{pmatrix} 12.5 \\ 15 \end{pmatrix} \text{ so } \begin{pmatrix} 12.5 \\ 15 \end{pmatrix} \text{ N}$	M1 F1	Use of $\mathbf{F} = m\mathbf{a}$ or $\mathbf{F} = mg\mathbf{a}$. FT their a only. Do not accept magnitude as final ans.	2
				7

6		Mark	Comment	Sub
(i)				
	$v_x = 8 - 4t$	M1	either Differentiating	
		A1	or Finding 'u' and 'a' from x and use of $v = u + at$	
	$v_{x} = 0 \Leftrightarrow t = 2 \text{ so at } t = 2$	F1	FT their $v_{r} = 0$	
	x		$V_x = 0$	3
(ii)				3
	$y = \int \left(3t^2 - 8t + 4\right) \mathrm{d}t$	M1	Integrating v_y with at least one correct integrated	
			term.	
	$= t^3 - 4t^2 + 4t + c$	A1	All correct. Accept no arbitrary constant.	
	y = 3 when $t = 1$ so $3 = 1 - 4 + 4 + c$	M1	Clea evidence	
	so $c = 3 - 1 = 2$ and $y = t^3 - 4t^2 + 4t + 2$	E1	Clearly shown and stated	
(iii)				4
(111)	We need $x = 0$ so $8t - 2t^2 = 0$	M1	May be implied.	
	so $t = 0$ or $t = 4$	A1	Must have both	
	t = 0 gives $y = 2$ so 2 m	A1	Condone 2 j	
	$t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18	A1	Condone 18j	
	m			4
(iv)				-
, ,	We need $v_x = v_y = 0$	M1	either Recognises $v_x = 0$ when $t = 2$	
			or Finds time(s) when $v_y = 0$	
			or States or implies $v_x = v_y = 0$	
	From above, $v_x = 0$ only when $t = 2$ so	M1		
		1711	Considers $v_x = 0$ and $v_y = 0$ with their time(s)	
	evaluate $v_y(2)$			
	$v_y(2) = 0$ [$(t-2)$ is a factor] so yes only			
	at $t=2$	A1	t = 2 recognised as only value (accept as evidence	
			only $t = 2$ used below).	
			For the last 2 marks, no credit lost for reference	
			to $t = \frac{2}{3}$.	
	At $t = 2$, the position is $(8, 2)$	B1	May be implied	
	Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	B1	FT from their position. Accept one position	
			followed through correctly.	
				5
(v)	0.1 200 (0.2) 271 (6.2)	D1	Address and the October 2	
	t = 0, 1 give (0, 2) and (6, 3)	B1	At least one value $0 \le t < 2$ correctly calc. This need not be plotted	
			need not be protted	
		B1	Must be <i>x-y</i> curve. Accept sketch. Ignore curve	
			outside interval for t.	
			Accept unlabelled axes. Condone use of line segments.	
		B1	At least three correct points used in <i>x-y</i> graph or	
			sketch. General shape correct. Do not condone use of line segments.	
			ase of fine segments.	
				3
		19		