		Mark	Comment	Sub
1(i)				
. ,	6 m s ⁻¹	B1	Neglect units.	
	4 m s ⁻²	B1	Neglect units.	
			-	2
(ii)				
	$v(5) = 6 + 4 \times 5 = 26$	B1		
	$s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$	M1	Or equiv. FT (i) and their $v(5)$ where necessary.	
	so 80 m	A1	cao	
				3
(iii)				
` /	distance is 80 +	M1	Their $80 + $ attempt at distance with $a = 3$	
	$26 \times (15-5) + 0.5 \times 3 \times (15-5)^2$	M1	Appropriat <i>uvast</i> . Allow $t = 15$. FT their v(5).	
	=490 m	A1	cao	
	150 111	111		3
		8		1

		Mark	Comment	
2.	a = 12 - 6t	M1	Differentiation, at least one term correct.	
_	a = 0 gives $t = 2$	A1 F1	Follow their a	
	$x = \int (2+12t-3t^2) \mathrm{d}x$	M1	Integration indefinite or definite, at least one term correct.	
	$2t + 6t^2 - t^3 + C$	A1	Correct. Need not be simplified. Allow as definite integral. Ignore <i>C</i> or limits	
	x = 3 when $t = 0$	M1	Allow $x = \pm 3$ or argue it is \int_{0}^{2} from A then ± 3	
	so $3 = C$ and		IIIGH ± 3	
	$x = 2t + 6t^2 - t^3 + 3$	A1	Award if seen WWW or $x = 2t + 6t^2 - t^3$ seen with +3 added later.	
	x(2) = 4 + 24 - 8 + 3 = 23 m	B1	FT their <i>t</i> and their <i>x</i> if obtained by integration but not if -3 obtained instead of +3. [If 20 m seen WWW for displacement award SC6] [Award SC1 for position if constant acceleration used for displacement and then +3 applied]	
				8
		8		

		mark		sub
3	$(v =)12 - 3t^{2}$ $v = 0 \Rightarrow 12 - 3t^{2} = 0$ so $t^{2} = 4$ and $t = \pm 2$ $x = \pm 16$	M1 A1 M1 A1	Differentiating Allow confusion of notation, including $x =$ Dep on 1 st M1. Equating to zero. Accept one answer only but no extra answers. FT only if quadratic or higher degree. cao. Must have both and no extra answers.	
				5

4		mark	notes
(i) (A)	4 m	B1	
(B)	12 - (-4) = 16 m	M1	Looking for distance. Need evidence of taking account of +ve and –ve displacements.
		A1	
(C)	1 < t < 3.5	B1 B1	The values 1 and 3.5 Strict inequality
(D)	t = 1, t = 3.5	B1 6	Do not award if extra values given.
(ii)	v = -8t + 8	M1	Differentiating
	a = -8	A1 F1 3	
(iii)	8t + 8 = 4 so $t = 0.5$ so 0.5 s	B1	FT their v.
	-8t + 8 = -4 so $t = 1.5$ so 1.5 s	B1 2	FT their v.
(iv)	method 1 Need velocity at $t = 3$ $v(3) = -8 \times 3 + 8 = -16$ either	B1	FT their v from (ii)
	$v = \int 32 \mathrm{d}t = 32t + C$	M1	Accept $32t + C$ or $32t$. SC1 if $\int_{1}^{4} 32 dt$ attempted.
	v = -16 when $t = 3$ gives $v = 32t - 112$	A1	Use of their -16 from an attempt at v when $t=3$
	$y = \int (32t - 112)dt = 16t^2 - 112t + D$	M1	FT their v of the form $pt + q$ with $p \neq 0$ and $q \neq 0$. Accept if at least 1 term correct. Accept no D .
	y = 0 when $t = 3gives y = 16t^2 - 112t + 192or$	A1	cao
	$y = -16 \times (t - 3) + \frac{1}{2} \times 32 \times (t - 3)^{2}$	M1	Use of $s = ut + \frac{1}{2}at^2$
		A1 M1	Use of their -16 (not 0) from an attempt at v when t =3 and 32. Condone use of just t Use of $t \pm 3$
	(so $y = 16t^2 - 112t + 192$)	A1	cao
	$(80 \ y = 10i \ -112i + 192)$		
	method 2 Since accn is constant, the displacement y is a quadratic function. Since we have $y = 0$ at		
	t = 3 and $t = 4y = k(t - 3)(t - 4)$	M1 A1 B1	Use of a quadratic function (condone no <i>k</i>) Correct use of roots <i>k</i> present
	When $t = 3.5$, $y = -4$ so $-4 = k \times \frac{1}{2} \times -\frac{1}{2}$	M1	Or consider velocity at $t = 3$
	so $k = 16$ (and $y = 16t^2 - 112t + 192$)	A1	cao Accept k without y simplified.
Phy	sicsAndMathsTutor.com	5 16	

		mark	comment	sub
5(i)				
	The line is not straight	B1	Any valid comment	
				1
(ii)				
	$a = 3 - \frac{6t}{8}$	M1	Attempt to differentiate. Accept 1	
	. 78	1411	term correct but not	
			$3 - \frac{3t}{8}$.	
	-(4) 0	- 4	8	
	a(4) = 0 The enripter has reached a	F1	Accept (stopped acceleration) but	
	The sprinter has reached a steady speed	E1	Accept 'stopped accelerating' but not just $a = 0$.	
	steady speed		Do not FT $a(4) \neq 0$.	
			20 11011 1 4(1) 7 0 1	3
				J
(iii)				
	We require $\int_{1}^{4} \left(3t - \frac{3t^2}{8}\right) dt$	M1	Integrating. Neglect limits.	
		1711	megrating. Neglect infine.	
	$= \left[\frac{3t^2}{2} - \frac{t^3}{8} \right]^4$	A1	One term correct. Neglect limits	
	$-\left[\frac{2}{2}-\frac{8}{8}\right]_{1}$	AI	One term correct. Neglect limits.	
	(24.8) (3.1)		Correct limits subst in integral.	
	$= (24 - 8) - \left(\frac{3}{2} - \frac{1}{8}\right)$	M1	Subtraction seen.	
			If arb constant used, evaluated to	
			give $s = 0$ when $t = 1$	
			and then sub $t = 4$.	
	= $14\frac{5}{8}$ m (14.625 m)	A1	cao. Any form.	
			[If trapezium rule used	
			M1 use of rule (must be clear	
			method and at least two regions)	
			A1 correctly applied	
			M1 At least 6 regions used A1 Answer correct to at least 2	
			s.f.	
			J	4
		8		

6				
(i)	8 m s^{-1} (in the negative direction)	B1	Allow ± and no direction indicated	1
(ii)	(t+2)(t-4) = 0 so $t = -2$ or 4	M1 A1	Equating <i>v</i> to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	a = 2t - 2 a = 0 when $t = 1v(1) = 1 - 2 - 8 = -9$	M1 A1 F1	Differentiating Correct	
	so 9 m s $^{-1}$ in the negative direction	A1	Accept -9 but not 9 without comment	
	(1,-9)	B1	FT	5
(iv)	$\int_{1}^{4} \left(t^2 - 2t - 8\right) \mathrm{d}x$	M1	Attempt at integration. Ignore limits.	
	$\int_{1}^{4} (t^{2} - 2t - 8) dx$ $= \left[\frac{t^{3}}{3} - t^{2} - 8t \right]_{1}^{4}$	A1	Correct integration. Ignore limits.	
	$=\left(\frac{64}{3}-16-32\right)-\left(\frac{1}{3}-1-8\right)$	M1	Attempt to sub correct limits and subtract	
	= -18	A1	Limits correctly evaluated. Award if -18 seen but no need to evaluate	
	distance is 18 m	A1	Award even if -18 not seen. Do not award for -18.	
			Cao	5
(v)	$2 \times 18 = 36 \text{ m}$	F1	Award for $2 \times$ their (iv).	1
(vi)	$\int_{4}^{5} (t^2 - 2t - 8) \mathrm{d}x = \left[\frac{t^3}{3} - t^2 - 8t \right]_{4}^{5}$	M1	\int_{4}^{5} attempted or, otherwise, complete method seen.	
	$= \left(\frac{125}{3} - 25 - 40\right) - \left(-\frac{80}{3}\right) = 3\frac{1}{3}$	A1	Correct substitution	
	so $3\frac{1}{3} + 18 = 21\frac{1}{3}$ m	A1	Award for $3\frac{1}{3}$ + their (positive) (iv)	
	- -			3
				17