#### **INTERNATIONAL A LEVEL**

# **Mechanics 1**

# Solution Bank



### **Exercise 8E**

1 If the rod is about to turn about *D* then the reaction at *C* is zero. Taking moments about point *D*:  $8g \times 0.5 = mg \times 0.8$ 

$$\Rightarrow m = 5$$

2 If the bar is about to tilt about C then the reaction at D is zero.  
Let the distance 
$$AE = xm$$

Taking moments about C:  

$$40 \times 1 = 30 \times (2 - x)$$
  
 $40 = 60 - 30x$   
 $30x = 20$   
 $x = \frac{2}{3}$   
The distance  $AE = \frac{2}{3}$  m

**3** Let the distance 
$$AE$$
 be  $x$  m.

If the plank is about to tilt about D then  $R_c = 0$ Taking moments about D:  $12g \times 0.4 = 32g \times (x - 1.9)$   $12 \times 0.4 = 32x - 32 \times 1.9$  32x = 4.8 + 60.8 = 65.6  $\Rightarrow x = \frac{65.6}{32}$ = 2.05

E is 2.05 m from A

4 a 
$$R(\uparrow)$$
:  
 $R_C + R_D = 20$  (1)  
Taking moments about C:  
 $20 \times 0.5 = R_D \times 2$   
 $R_D = 5 \text{ N}$  (2)  
Substituting (2) into (1):  
 $R_C = 20 - 5$   
 $= 15 \text{ N}$ 



R









#### **INTERNATIONAL A LEVEL**

## **Mechanics 1**

## Solution Bank

4 **b** Adding the weight of 12 N: Taking moments about C:  $20 \times 0.5 = 12 \times 2 + R_p \times 2$ 

 $10 = 24 + 2R_D$ 

 $\Rightarrow$   $R_p$  is negative, which is impossible, therefore there is an anticlockwise moment about C – rod will tilt.

c Distance AE is x m. The reactions at the supports are  $R_C$  and  $R_D$ . If rod tilts about C,  $R_D = 0$ . Taking moments about C:  $12 \times 2 = 20(2.5 - 2) + 100(x - 2)$  24 = 10 + 100x - 200  $x = \frac{200 + 24 - 10}{100}$  = 2.14In this case AE = 2.14

If rod tilts about *D*,  $R_C = 0$ . *E* must be on the other side of *D*, a distance *y* m from *B*.

Taking moments about *D*:

$$12 \times (5-1) + 20(2.5-1) = 100y$$
$$48 + 30 = 100y$$
$$y = \frac{78}{100}$$
$$= 0.78$$

In this case AE = 5 - 1 + 0.78 = 4.78The rod will remain in equilibrium if the particle is placed between 2.14 m and 4.78 m from A.

5 The reactions at the supports are  $R_A$  N and  $R_B$  N. When the plank tilts,  $R_A = 0$  and the man is x m from B. Taking moments about B:  $100g \times (7-5) = 80gx$ 

$$x = \frac{20}{80}$$
$$= 2.5$$

The man can walk 2.5 m past *B* before the plank starts to tip.

6 a Let ON = x m.

Let the tensions in the two wires be  $T_M$  N and  $T_N$  N. Since beam is on the point of tipping about N,  $T_M = 0$ . Taking moments about N:  $mgx = \frac{3}{4}mg \times 2a$  $x = \frac{3}{2}a$  as required.



7 m

100*g* N

 $A \xrightarrow{2 \text{ m}} 0.5 \text{ m} 1.5 \text{ m} 1 \text{ m}$   $A \xrightarrow{C} D$   $12 \text{ N} \xrightarrow{20 \text{ N}} 12 \text{ N}$   $17 \text{ R}_{\circ} \text{ N} \qquad 170 \text{ M}$ 

Pearson

Rn

В





*R*<sub>B</sub> N

x m

80g N

### **INTERNATIONAL A LEVEL**

# **Mechanics 1**

# Solution Bank



**6 b** Taking moments about *M*:

$$\left(\frac{3}{4}mg\times 3a\right) + mg\left(5-\frac{3}{2}\right)a = T_N \times 5a$$
$$\frac{9}{4}mg + 5mg - \frac{3}{2}mg = 5T_N$$
$$\left(\frac{9+20-6}{4}\right)mg = 5T_N$$
$$\frac{23}{4}mg = 5T_N$$
$$T_N = \frac{23}{20}mg$$

TN

The tension in the wire attached at N is  $\frac{23}{20}mg$ 

7 Let the tensions in the cables be  $T_C N$  and  $T_D N$ .

In the first case:

The beam must be on the point of tipping about *C*, so  $T_D = 0$ 

(This is because, if  $T_C = 0$ , there would be a resultant

moment around D no matter what the value of W, and the beam would not be in equilibrium.)

Taking moments about *C*:

 $180 \times 4 = 3W$ W = 240

In the second case:

When V is at maximum value, the beam will be on the point of tipping around D and  $T_C = 0$ .

Taking moments about *D*:

 $W \times 1 = V \times 6$  $V = \frac{240 \times 1}{6}$ 

$$=40$$

The maximum value of V that keeps the beam level is 40 N.



