INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

Exercise 8E

1 If the rod is about to turn about *D* then the reaction at *C* is zero. Taking moments about point *D*: $8g \times 0.5 = mg \times 0.8$

$$
\Rightarrow m = 5
$$

2 If the bar is about to tilt about *C* then the reaction at *D* is zero. Let the distance $AE = xm$

Taking moments about C:
\n
$$
40 \times 1 = 30 \times (2 - x)
$$
\n
$$
40 = 60 - 30x
$$
\n
$$
30x = 20
$$
\n
$$
x = \frac{2}{3}
$$
\n
$$
x = \frac{2}{3}
$$
\n
$$
x = \frac{2}{3}
$$

3 Let the distance
$$
AE
$$
 be x m.

If the plank is about to tilt about *D* then $R_c = 0$ Taking moments about *D*: $12g \times 0.4 = 32g \times (x-1.9)$ $12 \times 0.4 = 32x - 32 \times 1.9$ $32x = 4.8 + 60.8$ $= 65.6$ 65.6 32 \Rightarrow *x* =

 $= 2.05$ E is 2.05 m from \ddot{A}

4 **a**
$$
R(\uparrow)
$$
:
\n $R_C + R_D = 20$ (1)
\nTaking moments about C:
\n $20 \times 0.5 = R_D \times 2$
\n $R_D = 5N$ (2)
\nSubstituting (2) into (1):
\n $R_C = 20 - 5$
\n= 15 N

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

4 b Adding the weight of 12 N: Taking moments about *C*: $20 \times 0.5 = 12 \times 2 + R_p \times 2$

 $10 = 24 + 2R_p$

c Distance AE is *x* m. The reactions at the supports are *RC* and *RD*. If rod tilts about *C*, $R_D = 0$. Taking moments about C: $12 \times 2 = 20(2.5 - 2) + 100(x - 2)$ $24 = 10 + 100x - 200$ $x = \frac{200 + 24 - 10}{100}$ 100 $= 2.14$ In this case $AE = 2.14$

If rod tilts about *D*, $R_C = 0$. *E* must be on the other side of *D*, a distance *y* m from *B*. Taking moments about *D*:

Taking moments about D:
\n
$$
12 \times (5-1) + 20(2.5-1) = 100y
$$
\n
$$
48 + 30 = 100y
$$
\n
$$
y = \frac{78}{100}
$$
\n
$$
= 0.78
$$

In this case $AE = 5 - 1 + 0.78 = 4.78$ The rod will remain in equilibrium if the particle is placed between 2.14 m and 4.78 m from *A*.

5 The reactions at the supports are *RA* N and *RB*N. When the plank tilts, $R_A = 0$ and the man is x m from *B*. Taking moments about *B*: $100g \times (7-5) = 80gx$

$$
x = \frac{200}{80}
$$

$$
= 2.5
$$

The man can walk 2.5 m past *B* before the plank starts to tip.

6 a Let *ON = x*m.

Let the tensions in the two wires be T_M **N** and T_N **N**. Since beam is on the point of tipping about *N,* $T_M = 0$. Taking moments about *N*: $mgx = \frac{3}{4}mg \times 2a$ $x = \frac{3}{2}a$ as required.

 $\frac{7m}{5m}$ \longrightarrow

100g N

 $R_B N$

 x_m

80g N

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

mg

 T_M

M

6 b Taking moments about *M*:

$$
\left(\frac{3}{4}mg \times 3a\right) + mg\left(5 - \frac{3}{2}\right)a = T_N \times 5a
$$

$$
\frac{9}{4}mg + 5mg - \frac{3}{2}mg = 5T_N
$$

$$
\left(\frac{9 + 20 - 6}{4}\right)mg = 5T_N
$$

$$
\frac{23}{4}mg = 5T_N
$$

$$
T_N = \frac{23}{20}mg
$$

The tension in the wire attached at *N* is $\frac{23}{20}$ *mg*

7 Let the tensions in the cables be T_C N and T_D N.

In the first case:

The beam must be on the point of tipping about *C*, so $T_D = 0$

(This is because, if $T_c = 0$, there would be a resultant

moment around *D* no matter what the value of W, and the beam would not be in equilibrium.)

Taking moments about *C*:

 $180 \times 4 = 3W$ $W = 240$

In the second case:

When *V* is at maximum value, the beam will be on the point of tipping around *D* and $T_C = 0$.

Taking moments about *D*:

 $W \times 1 = V \times 6$ $=\frac{240\times1}{1}$ \mathbf{v}

$$
V = \frac{6}{6}
$$

$$
= 40
$$

The maximum value of *V* that keeps the beam level is 40 N.

