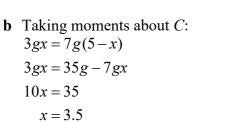
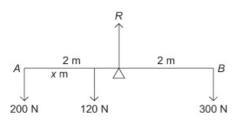

Mechanics 1

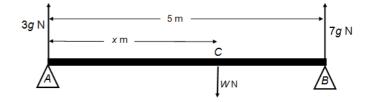
Solution Bank


Exercise 8D

Resolving vertically: $6 = R_A + R_B$ Taking moments about A: $6 \times 2.4 = 4 \times R_B$ $\Rightarrow R_B = 3.6 \text{ N}$ So $R_A = 2.4 \text{ N}$


The reactions at A and B are 2.4 N and 3.6 N respectively.

- 2 Centre of mass is at *C*, a distance *x* m from *A*. The bar is in equilibrium.
 - a Resolving vertically: W = 3g + 7g = 10gThe weight of the bar is 10g N


The centre of mass is 3.5 m from A.

Let the centre of mass be x m from A. Taking moments about the mid-point: $120 \times (2-x) + 200 \times 2 = 300 \times 2$

$$240 - 120x + 400 = 600$$
$$120x = 40$$
$$\Rightarrow x = \frac{40}{120} = \frac{1}{3}$$
The centre of mass is $\frac{1}{3}$ m from A.

Mechanics 1

Solution Bank

4 a

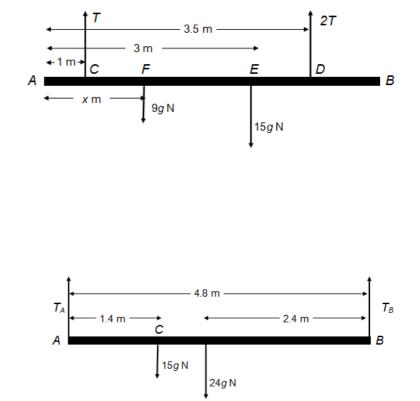
$$A \xrightarrow{T_C} T_D$$

$$A \xrightarrow{T_m} 2 \text{ m} 0.5 \text{ m} 1.5 \text{ m}$$

$$C \xrightarrow{E} D$$

$$15g$$

Taking moments about C: $T_D \times 2.5 = 15g \times 2$ $2.5T_D = 30g$ $T_D = 12g$ = 118 N (3 s.f.) Resolving vertically: $T_C + T_D = 15g$


$$T_c = 3g$$
$$= 29.4 \,\mathrm{N}$$

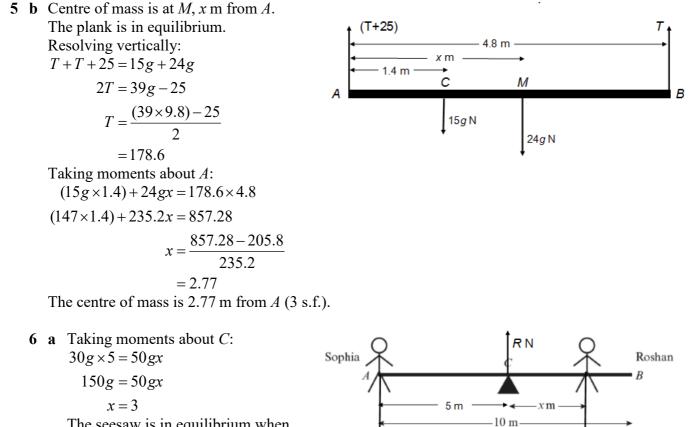
b Let distance AF = x m. The bar is in equilibrium. Resolve vertically: T + 2T = 9g + 15g 3T = 24g T = 8g and 2T = 16gTaking moments about A: $9gx + (15g \times 3) = (8g \times 1) + (16g \times 3.5)$ 9x = 8 + 56 - 4519

$$x = \frac{1}{9}$$

= 2.11
The distance *AF* is 2.11 m (3 s.f.).

5 a Let the tensions in the ropes be T_A and T_B respectively. The plank is in equilibrium. Taking moments about A: $T_B \times 4.8 = (1.4 \times 15g) + (2.4 \times 24g)$ $4.8T_B = 21g + 57.6g$ $T_B = \frac{78.6 \times 9.8}{4.8}$ = 160

The tension in the rope at B is 160 N.

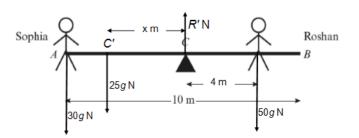


INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

The seesaw is in equilibrium when Roshan sits 3 m from *C*.


b Modelling the beam as uniform means that the centre of mass of the seesaw is at *C*, and so weight of the seesaw can be ignored when taking moments about *C*.

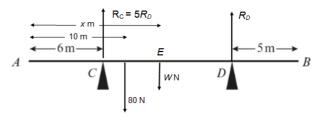
30*g* N

c Centre of mass is at C', y m from C.
Taking moments about C:

$$(30g \times 5) + 25gx = 50g \times 4$$
 (divide by 5g)
 $30 + 5x = 40$
 $x = \frac{40 - 30}{5} = 2$

The centre of mass is 2 m to the left of *C* (towards Sophia).

50*g* N


INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

7 The rod is in equilibrium. Letting $R_D = R$ gives $R_c = 5R$ Resolving vertically: $R_c + R_D = 80 + W$ 5R + R = 80 + W $R = \frac{80 + W}{6}$ Taking moments about A: $(6 \times 5R) + 20R = (80 \times 10) + Wx$ 50R = 800 + Wx $50\left(\frac{80+W}{6}\right) = 800 + Wx$ (multiply by 6 and expand) 4000 + 50W = 4800 + 6Wx(50-6x)W = 4800 - 4000(divide by 2 and rearrange) $W = \frac{400}{25 - 3x}$ as required.

