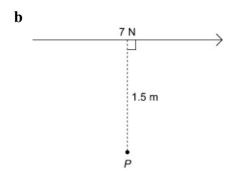
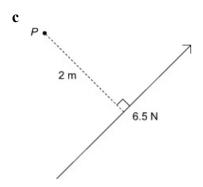
Solution Bank

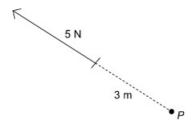


1


Exercise 8A

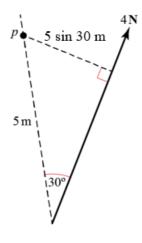
1 a 3 N 2 m

Moment = $3 \times 2 = 6$ Nm clockwise



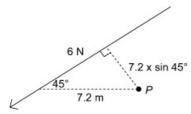
Moment = $7 \times 1.5 = 10.5$ Nm clockwise

Moment = $2 \times 6.5 = 13$ Nm anticlockwise



The line of action of the force acts through P, so moment = 0 Nm

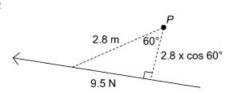
Solution Bank


2 a

First, draw in the right-angled triangle. Perpendicular distance = $5 \times \sin 30^{\circ}$ Moment = $4 \times 5 \sin 30^{\circ}$

=10 Nm anticlockwise

b



Distance = $7.2 \times \sin 45^{\circ}$

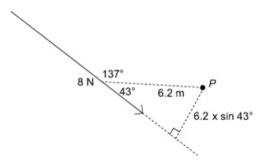
 $Moment = 6 \times 7.2 \sin 45^{\circ}$

= 30.5 Nm anticlockwise

c

Distance = $2.8 \times \cos 60^{\circ}$

 $Moment = 9.5 \times 2.8 \cos 60^{\circ}$


=13.3 Nm clockwise

Mechanics 1

Solution Bank

2 d

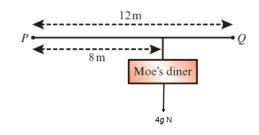
First, draw in the right-angled triangle. Angle inside the triangle = $180^{\circ} - 137^{\circ} = 43^{\circ}$

Distance = $6.2 \times \sin 43^{\circ}$

 $Moment = 8 \times 6.2 \sin 43^{\circ}$

= 33.8 Nm anticlockwise

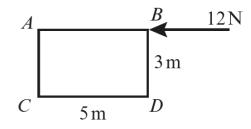
3 a i Moment = magnitude of force \times perpendicular distance Moment about $P = 4g \times 8$


$$=4\times9.8\times8$$

$$=313.6$$

The moment about *P* is 313.6 Nm clockwise.

ii Moment = magnitude of force \times perpendicular distance Moment about $Q = 4g \times (12-8)$ = $4 \times 9.8 \times 4$ = 156.8


The moment about Q is 156.8 Nm anticlockwise.

- **b** In these calculations, we have assumed that the sign is a particle i.e. all the weight of the sign acts at its centre of mass.
- 4 a Moment = magnitude of force \times perpendicular distance Moment about $A = 12 \times 0$

$$= 0 \text{ Nm}$$

b Moment = magnitude of force \times perpendicular distance Moment about $B = 12 \times 0$ = 0 Nm

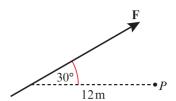
3

c Moment = magnitude of force \times perpendicular distance Moment about $C = 12 \times 3$

= 36 Nm anticlockwise

d Moment = magnitude of force \times perpendicular distance Moment about $D = 12 \times 3$

= 36 Nm anticlockwise


Mechanics 1

Solution Bank

5 Moment = magnitude of force × perpendicular distance $15 = F \times 12 \sin 30^{\circ}$

$$F = \frac{15}{12\sin 30^{\circ}}$$
$$= 2.5 \text{ Nm}$$

