Mechanics 1

Solution Bank

Chapter review 7

1 a Finding the components of *P* along each axis:

$$
R(\rightarrow): P_x = 12 \cos 70^\circ + 10 \sin 75^\circ
$$

\n
$$
R(\uparrow): P_y = 12 \sin 70^\circ - 10 \cos 75^\circ
$$

\n
$$
\tan \theta = \frac{P_y}{P_x}
$$

\n
$$
\tan \theta = \frac{12 \sin 70^\circ - 10 \cos 75^\circ}{12 \cos 70^\circ + 10 \sin 75^\circ} = 0.63124...
$$

\n
$$
\theta = 32.261...
$$

\nThe angle θ is 32.3° (to 3 s.f.).

b Using Pythagoras' theorem: $P^2 = (12\cos 70^\circ + 10\sin 75^\circ)^2 + (12\sin 70^\circ - 10\cos 75^\circ)^2$ $P^2 = P_x^2 + P_y^2$ $P = \sqrt{264.91...} = 16.276...$ *P* has a magnitude of 16.3 N (3 s.f.).

$$
2 \quad a \quad R\left(\bigwedge\right):
$$

$$
W \cos \theta = 40 \sin 30^\circ + 30 \sin 45^\circ
$$

\n
$$
R(\swarrow):
$$

\n
$$
30 \cos 45^\circ + W \sin \theta = 40 \cos 30^\circ
$$

\n
$$
W \sin \theta = 40 \cos 30^\circ - 30 \cos 45^\circ
$$

$$
\frac{W \sin \theta}{W \cos \theta} = \frac{40 \cos 30^\circ - 30 \cos 45^\circ}{40 \sin 30^\circ + 30 \sin 45^\circ}
$$

\n
$$
\tan \theta = \frac{20\sqrt{3} - 15\sqrt{2}}{20 + 15\sqrt{2}} = 0.35281...
$$

\n
$$
\theta = 18.046...
$$

\nThe angle θ is 18.0° (to 3 s.f.).

b Using Pythagoras' theorem, $|W|^2$ is the sum of the squares of the two components.

$$
W^{2} = (20\sqrt{3} - 15\sqrt{2})^{2} + (20 + 15\sqrt{2})^{2}
$$

$$
W = \sqrt{1878.8...} = 43.345...
$$

The weight of the particle is 43.3 N (3 s.f.).

 $\frac{1}{2} = \frac{\cos 20^{\circ} \times 1061.6...}{\cos 10^{\circ}} = 1012.9...$ $T_2 = \frac{\cos 20^\circ \times 1061.6...}{100} =$ $^{\circ}$

cos10

The tensions in the two parts of the rope are 1062 N and 1013 N (nearest whole number).

$$
R(T)
$$

T-2g=0

$$
\therefore T=2g
$$

For the 5 kg particle: $R(\mathcal{N})$ $T + F \cos \theta - 5g \sin \theta = 0$:. $F \cos \theta = 5g \sin \theta - T$

As
$$
T = 2g
$$
, $\cos \theta = \frac{4}{5}$ and $\sin \theta = \frac{3}{5}$
\n
$$
F \times \frac{4}{5} = 5g \times \frac{3}{5} - 2g
$$
\n
$$
\therefore F = g \times \frac{5}{4}
$$
\n
$$
= \frac{5g}{4}
$$
\n
$$
= 12 (2 s.f.)
$$

b
$$
R(\sim)
$$

\n $R - F \sin \theta - 5g \cos \theta = 0$
\n $\therefore R = F \sin \theta + 5g \cos \theta$
\n $= \left(\frac{5}{4}g \times \frac{3}{5}\right) + \left(5g \times \frac{4}{5}\right)$
\n $= \frac{19}{4}g$
\n $= 47 (2 \text{ s.f.})$

Mechanics 1

Solution Bank

- **4 c** *F* will be smaller
- **5 a** Resolving vertically:

 $T \cos 20^\circ = T \cos 70^\circ + 2g$ $T(\cos 20^\circ - \cos 70^\circ) = 2g$ $\frac{2\times9.8}{8}$ = 32.793... $\cos 20^\circ - \cos 70$ *T* $=\frac{2\times9.8}{\cos 20^\circ-\cos 70^\circ}=$

The tension in the string*,* to two significant figures, is 33 N.

- **b** Resolving horizontally: $P = T \sin 20^\circ + T \sin 70^\circ$ $P = (\sin 20^\circ + \sin 70^\circ) \times 32.793...$ $P = 42.032...$ The value of *P* is 42 N (2 s.f.).
- **6** Res (\nwarrow) $R = mg \cos \theta$ When the box is on the point of slipping $Res(\nearrow)$ $\mu R = mg \sin \theta$ $\theta = \tan^{-1} \mu$ as required $\frac{\mu R}{R} = \frac{mg \sin \theta}{r^2}$ *R* $mg \cos \theta$ $\mu = \tan \theta$

7 Assuming that force is applied so that it acts in a downwards direction:

Res
$$
(\uparrow)
$$
 $R = mg + \frac{1}{5}mg \sin \theta$
\nRes (\rightarrow) $\frac{1}{5}mg \cos \theta = F$
\nParticle remains stationary so $F \leq \mu R$
\n $\mu R \geq \frac{mg \cos \theta}{5}$
\n $\mu \geq \frac{mg \cos \theta}{5 \left(mg + \frac{1}{5}mg \sin \theta\right)}$

 $\frac{\cos \theta}{5 + \sin \theta}$ as required $\mu \geq \frac{\cos \theta}{5 + \sin \theta}$ +

Mechanics 1

Solution Bank

8 Assuming that force is applied so that it acts in an upwards direction:

 $Res(\uparrow)$ $R + 5sin \theta = 5g$ $R = 5g - 5\sin\theta$ R If particle is on the point of slipping 5 N $Res(\rightarrow) 5cos \theta = \mu R$ Therefore, μR θ 5cos θ $\mu = \frac{36886}{5g - 5\sin\theta}$ $5g - 5\sin$ $\frac{1}{5g}$ cos θ $=\frac{\cos\theta}{g-\sin\theta}$ (1) g – sin Since $\theta = \tan^{-1} \left(\frac{4}{2} \right)$ $\theta = \tan^{-1}\left(\frac{4}{3}\right)$ $\tan \theta = \frac{4}{3}$ $\theta =$ 3 $\sin \theta = \frac{4}{5}$ $\theta = \frac{4}{5}$ and $\cos \theta = \frac{3}{5}$ $\theta =$ $\overline{4}$ 5 5 Substituting into (1) gives $\mu = \frac{\cos \theta}{g - \sin \theta}$ cos 3 sin *g* 3 5 = 4 *g* − 5 3 $=\frac{5}{5g-4}$ $=\frac{1}{15}$ as required

Mechanics 1

Solution Bank

9 If the system is stationary For *m* $Res(\uparrow)$ *T* = *mg* For *M* $Res(\nearrow)$ *T* = *Mg* sin θ $mg = Mg \sin \theta$ $\frac{m}{M}$ = sin *M* $=$ sin θ Since $\theta = \tan^{-1} \left(\frac{5}{10} \right)$ $\theta = \tan^{-1}\left(\frac{5}{12}\right)$ $\tan \theta = \frac{5}{16}$ 12 $\theta =$ $\sin \theta = \frac{5}{16}$ 13 $\theta =$ Therefore $\frac{m}{M} = \frac{5}{13}$ as required

