Mechanics 1

Solution Bank

Chapter review 6

Using conservation of momentum: (\rightarrow) 6mu - 4mu = 4mv

$$\frac{1}{2}u = v$$

After the collision the direction of Q is reversed and its speed is $\frac{1}{2}u$

b Impulse = change in momentum $I = (3m \times 2u) - 0$ = 6mu

The magnitude of the impulse exerted by Q on P is 6mu

2 a $v^2 = u^2 + 2as$

 $v^2 = 2 \times 10 \times 9.8$

 $v = 14 \,\mathrm{m\,s^{-1}}$

The speed of the driver immediately before it hits the pile is 14 m s^{-1}

b Using conservation of momentum: (\downarrow)

$$1000 \times 14 = 1200v$$
$$v = \frac{35}{3}$$

The common speed of the pile and pile driver is $\frac{35}{3}$ m s⁻¹

c First, use F = ma to find the deceleration.

 $1200g - 120\ 000 = 1200a$ a = -90.2

120000

Mechanics 1

3

Solution Bank

2 d The model assumes that the pile driver would not 'bounce' upon contact with the pile, i.e. the particles coalesce. Given that the pile driver is much heavier than the pile, this would be a fair assumption.

Positive direction a m s⁻² RNFN800g **a** u = 18, v = 12, t = 2.4, a = ?v = u + at12 = 18 + 2.4a $a = \frac{12 - 18}{2.4} = -2.5$ F = ma $-F = 800 \times (-2.5) = -2000 \Longrightarrow F = 2000$

The value of F is 2000.

b
$$u = 18, v = 12, t = 2.4, s = ?$$

 $s = \left(\frac{u+v}{2}\right)t$
 $= \left(\frac{18+12}{2}\right) \times 2.4 = 15 \times 2.4 = 36$

The distance moved by the car is 36 m

Positive direction 4 4 m s-0 m s Before 0.2 kg 0.3 kg

After

v m s a Conservation of momentum

$$0.2 \times 4 = (0.2 \times v) + (0.3 \times 1.5)$$
$$0.8 = 0.2v + 0.45$$
$$v = \frac{0.8 - 0.45}{0.2} = 1.75$$

The speed of A after the impact is 1.75 m s^{-1}

1.5 m s

You are going to have to use F = ma to find F. So the first step of your solution must be to find *a*.

The retarding force is slowing the car down and is in the negative direction. So, in the positive direction, the force is -F.

You could use the value of a you found in part **a** and another formula. Unless it causes you extra work, it is safer to use the data in the question.

A full formula for the conservation of momentum is $m_A u_A + m_B u_B = m_A v_A + m_B v_B$. In this case the velocity of B is zero.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

Mechanics 1

Solution Bank

4 b Consider the impulse of B on A

I = mv - mu $=(0.2 \times 1.75) - (0.2 \times 4)$ = 0.35 - 0.8 = -0.45

The magnitude of the impulse of B on Aduring the impact is 0.45 N s

- 5 10 m s^{-1} 0 m s^{-1} Before 2000 kg 3000 kg After 5 m s
 - a Conservation of linear momentum

$$2000 \times 10 = (2000 \times v) + (3000 \times 5)$$
$$20000 = 2000v + 15000$$
$$v = \frac{20000 - 15000}{2000} = 2.5$$

It is a common mistake to mix up the particles. The impulses on the two particles are equal and opposite. Finding the magnitude of the impulse, you can consider either particle – either would give the same magnitude. However, you must work on only one single particle. Here you can work on A or B, but not both.

The speed of P immediately after the collision is 2.5 m s^{-1}

b For Q_{i}

I = mv - mu $I = (3000 \times 5) - (3000 \times 0) = 15\ 000$ To find the magnitude of the impulse you could consider either the change in momentum of P or the change of momentum of Q. You must not mix them up.

The magnitude of the impulse of P on Q is 15 000 N s

After

Positive direction

a Conservation of momentum

$$(1.5 \times 3) + (2.5 \times (-4)) = (1.5 \times (-2.5)) + (2.5 \times v)$$
$$4.5 - 10 = -3.75 + 2.5v$$
$$2.5v = 4.5 - 10 + 3.75 = -1.75$$
$$v = -\frac{1.75}{2.5} = -0.7$$

You do not know which direction Q will be moving in after the impact. Mark the unknown velocity as $v \text{ m s}^{-1}$ in the positive direction. After you have worked out v, the sign of v will tell you the direction Q is moving in.

The sign of v is negative, so Q is moving in the negative direction. It was moving in the negative direction before the impact and so its direction has not changed.

The speed of Q immediately after the impact is 0.7 m s⁻¹

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

- **6 b** The direction of Q is unchanged.
 - **c** For *P*, I = mv mu $I = (1.5 \times (-2.5)) - (1.5 \times 3) = -8.25$

The magnitude of the impulse exerted by Q on P is 8.25 N s

Conservation of momentum: (\rightarrow)

$$(m \times 2u) + (km \times (-u)) = (m + km) \times \frac{2}{3}u$$
$$2mu - kmu = \frac{2}{3}mu + \frac{2}{3}kmu$$
$$2mu - \frac{2}{3}mu = kmu + \frac{2}{3}kmu$$
$$\frac{4}{3}mu = \frac{5}{3}kmu$$
$$k = \frac{4}{3} \times \frac{3}{5} = \frac{4}{5}$$

After the collision A (of mass m) and B (of mass km) combine to form a single particle. That particle will have the mass which is the sum of the two individual masses, m + km.

The total linear momentum before impact must equal the total linear momentum after impact. Particle *B* is moving in the negative direction before the collision and so it has a negative linear momentum.

m and u are common factors on both sides of the equation and can be cancelled.

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

 $v \mathrm{m} \mathrm{s}^{-1}$

After

8 a

Conservation of momentum: (\downarrow)

$$(10 \times 9) + (2 \times 0) = 12 \times v$$

 $v = \frac{90}{12} = 7.5$

Pin

The speed of the pin immediately after impact is 7.5 m s^{-1}

Using F = ma: $12g - R = 12 \times (-937.5)$ $R = (12 \times 9.8) + (12 \times 937.5)$ =11367.6The value of R is 11 000 (2 s.f.)

c The resistance (R) could be modelled as varying with speed.

After impact, the sledgehammer and the metal pin move together. You model the sledgehammer and pin as a single particle of mass 12 kg.

The model given in the question assumes that the pin and sledgehammer stay in contact and move together after impact, before coming to rest. Although the question only refers to the pin, you must consider the pin and the sledgehammer as moving together, with the same velocity and the same acceleration, throughout the motion after the impact.