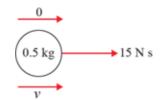
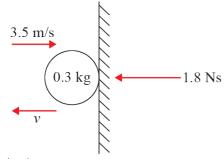

Mechanics 1


Solution Bank


1

Exercise 6A

2

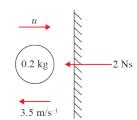
$$I = mv - mu$$

$$1.8 = (0.3 \times v) - (0.3 \times (-3.5))$$

$$1.8 = 0.3v + 1.05$$

$$0.75 = 0.3v$$

$$v = 2.5 \text{ m s}^{-1}$$


The speed of the ball just after it rebounds is $2.5~\mbox{m s}^{-1}$

3
$$Ft = mv - mu$$

 $0.4 \times 1.5 = 0.2(v - 0)$
 $0.6 = 0.2v$
 $3 = v$

The speed of the toy car is 3 m s^{-1}

4 (
$$\leftarrow$$
):
 $2 = 0.2(3.5 - (-u))$
 $10 = 3.5 + u$

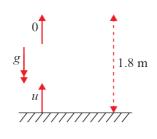
$$u = 6.5$$

The speed of the ball before it hits the wall is $6.5\ m\ s^{-1}$

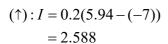
Mechanics 1

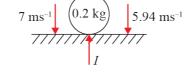
5
$$u = 0$$
, $a = g$, $s = 2.5$, $v = ?$

$$u = 6, u = g, s = 2.5, v = 3.5$$


$$(\downarrow): v^{2} = u^{2} + 2as$$

$$v^{2} = 0^{2} + 2 \times 9.8 \times 2.5$$


$$= 49$$


$$v = 7$$

(†):
$$v = 0$$
, $a = -g$, $s = 1.8$, $u = ?$
 $v^2 = u^2 + 2as$
 $0^2 = u^2 + 2(-9.8) \times 1.8$
 $u^2 = 35.28$
 $u = 5.94$

Take upwards as positive.

The magnitude of the impulse received by the ball is 2.59 N s (2 d.p.)

2