Mechanics 1

Solution Bank

Exercise 5C

1 **a** i
$$
R(\uparrow)
$$

\n $R - 5g = 0$
\n $R = 5g$
\n $= 49 \text{ N}$
\n $\therefore F_{MAX} = \frac{1}{7} \times 49$
\n $= 7 \text{ N}$

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so $F = 3$ N.

- **ii** Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **b i** $F_{MAX} = 7$ N (from part **a**), and driving force is 7 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. $F = 7$ N.
	- **ii** *F* is equal to the driving force of 7 N, so the body remains at rest in limiting equilibrium.
- **c i** $F_{MAX} = 7 \text{ N (from part a), and driving force is 12 N, so friction will be at its maximum$ value of 12 N.
	- **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$
R(\rightarrow)
$$

$$
F = ma
$$

 $12 - 7 = 5a$

 $a = 1$ ms⁻²

Body accelerates at 1 ms^{-2}

d i
$$
R(\uparrow)
$$

\n $R-14-5g=0$
\n $R = 63 \text{ N}$
\n $\therefore F_{MAX} = \mu R$
\n $= \frac{1}{7} \times 63$
\n $= 9 \text{ N}$

Since the driving force is only 6 N, the friction will only need to be 6 N to prevent the block from slipping, so $F = 6$ N.

- **ii** Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **e i** $F_{MAX} = 9$ N (from part **d**), and driving force is 9 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. $F = 9$ N.

Mechanics 1

Solution Bank

- **1 e ii** *F* is equal to the driving force of 9 N, so the body remains at rest in limiting equilibrium.
	- **f i** $F_{MAX} = 9$ N (from part **d**), and driving force is 12 N, so friction will be at its maximum value of 12 N.
		- **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$
R(\rightarrow)
$$

\n $F = ma$
\n $12 - 9 = 5a$

 $a = 0.6 \,\text{ms}^{-2}$

Body accelerates at 0.6m s^{-2}

$$
\begin{aligned}\n\mathbf{g} &\mathbf{i} & R(\uparrow) \\
R + 14 - 5g &= 0 \\
R &= 35 \text{ N} \\
\therefore F_{MAX} &= \mu R \\
&= \frac{1}{7} \times 35 \\
&= 5 \text{ N}\n\end{aligned}
$$

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so $F = 3$ N.

- **ii** Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **h i** $F_{MAX} = 5$ N (from part **g**), and driving force is 5 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. $F = 5$ N.
	- **ii** *F* is equal to the driving force of 5 N, so the body remains at rest in limiting equilibrium.
- **i i** $F_{MAX} = 5$ N (from part **g**), and driving force is 6 N, so friction will be at its maximum value of 6 N
	- **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$ $a = 0.2 \,\mathrm{m\,s^{-2}}$ $6 - 5 = 5a$ $F = ma$ Body accelerates at 0.2 m s^{-2}

Mechanics 1

Solution Bank

1 j i

 $R + 14\sin 30^\circ - 5g = 0$ $R = 42$ N $=\frac{1}{7} \times 42$ $= 6 N$ $\therefore F_{MAX} = \mu R$

Considering horizontal forces: Driving force $-F_{MAX} = 14 \cos 30^{\circ} - 6 > 0$, so $F = F_{MAX} = 6$ N

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$

 $a = 1.22 \,\text{m s}^{-2}$ (3 s.f.) $14\cos 30^\circ - 6 = 5a$ $F = ma$ Body accelerates at 1.22 ms^{-2} (3 s.f.)

k i $R(\uparrow)$

 $R + 28\sin 30^{\circ} - 5g = 0$ $R = 35 N$ $=\frac{1}{7}\times 35$ $=5N$ $\therefore F_{MAX} = \mu R$ Considering horizontal forces:

Driving force $-F_{MAX} = 28 \cos 30^{\circ} - 5 > 0$, so $F = F_{MAX} = 5 N$

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$

 $a = 3.85 \,\mathrm{m\,s}^{-2}$ (3 s.f.) $28\cos 30^\circ - 5 = 5a$ $F = ma$ Body accelerates at 3.85 m s^{-2} (3 s.f.)

Mechanics 1

Solution Bank

1 l i $R - 56 \cos 45^\circ - 5g = 0$ $\therefore R = 88.6 \text{ N} \text{ (3 s.f.)}$ $=\frac{1}{7} \times 88.6$ $=12.657$ N $\therefore F_{MAX} = \mu R$ Considering horizontal forces: Driving force $-F_{MAX} = 56 \sin 45^\circ - 12.657 > 0$, so $F = F_{MAX} = 12.7$ N (3 s.f.)

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$
R(\rightarrow)
$$

$$
F = ma
$$

56 sin 45°-12.657 = 5a

$$
5a = 26.941
$$

$$
a = 5.388 \text{ m s}^{-2}
$$

So the acceleration is 5.39 m s⁻² (3 s.f.)

2 **a**
$$
R(\uparrow)
$$

\n $R + 20 \sin 30^\circ - 10g = 0$
\n $R = 88 \text{ N}$
\n $R(\rightarrow)$
\n $F = ma$
\n $20 \cos 30^\circ - \mu \times 88 = 10 \times 1$
\n $\mu = 0.083 \text{ (2 s.f.)}$
\n**b** $R(\uparrow)$
\n $R + 20 \cos 30^\circ - 10g = 0$
\n $R = 80.679 \dots \text{ N}$
\n $R(\rightarrow)$
\n $F = ma$
\n $20 \cos 60^\circ - \mu \times 80.679 = 10 \times 0.5$
\n $\mu = 0.062 \text{ (2 s.f.)}$
\n**c** $R(\uparrow)$
\n $R - 20\sqrt{2} \sin 45^\circ - 10g = 0$
\n $R = 118 \text{ N}$
\n $R(\rightarrow)$
\n $20\sqrt{2} \cos 45^\circ - \mu \times 118 = 10 \times 0.5$
\n $\mu = 0.13 \text{ (2 s.f.)}$

Mechanics 1

Solution Bank

3 $R(\mathcal{R})$: $R = 0.5g\cos 15^\circ$ $= 0.5 \times 9.8 \cos 15^{\circ}$ $=4.7330...$ Using Newton's second law of motion and $R(K)$: $0.5g \sin 15^\circ - \mu R = 0.5 \times 0.25$ μ R = (0.5 × 9.8sin15°) – 0.125 $1.2682... - 0.125$ $\mu = \frac{1.2682... - 0.47330...}{\ldots}$ $= 0.24153...$ $F = ma$

The coefficient of friction is
$$
0.242
$$
 (3s.f.).

4 $R(\mathcal{R})$:

 $R = 2g\cos 20^\circ$

 $= 2 \times 9.8 \cos 20^{\circ}$

 $=18.418...$

Using Newton's second law of motion $(F = ma)$ and $R(\mathcal{L})$: $2g \sin 20^\circ - 0.3R - P = 2 \times 0.2$

 $(2 \times 9.8 \sin 20^\circ) - (0.3 \times 18.418...) - 0.4 = P$

$$
P=0.7782\dots
$$

The force *P* is 0.778 N (3s.f.).

5 $R(K)$:

$$
R = 5g\cos 30^\circ + P\sin 30^\circ
$$

$$
= \frac{49\sqrt{3}}{2} + \frac{P}{2}
$$

Using Newton's second law of motion and $R(\boldsymbol{\pi})$: $P\cos 30^\circ - 5g\sin 30^\circ - 0.2R = 5 \times 2$

$$
P\cos 30^\circ = 10 + 5g \sin 30^\circ + \frac{1}{5} \left(\frac{P}{2} + \frac{49\sqrt{3}}{2} \right)
$$

$$
\left(\frac{\sqrt{3}}{2} - \frac{1}{10} \right) P = 10 + \frac{5 \times 9.8}{2} + \frac{49\sqrt{3}}{10}
$$

$$
\left(5\sqrt{3} - 1 \right) P = 100 + 245 + 49\sqrt{3}
$$

$$
P = \frac{429.8704896}{7.6602...} = 56.117...
$$

The force *P* is 56.1 N (3 s.f.).

Mechanics 1

Solution Bank

6 Resolving vertically: $R + P \sin 45^\circ = 10g$ $P\sin 45^\circ = 10g - R$ (1) Resolving horizontally and using *F = ma*: $P\cos 45^\circ - 0.1R = 10 \times 0.3$ $P\cos 45^\circ = 3 + 0.1R$ (2)

Since $\sin 45^\circ = \cos 45^\circ$, we can equate (1) and (2): $10g - R = 3 + 0.1R$ $1.1R = 10g - 3$

$$
R = \frac{(10 \times 9.8) - 3}{1.1} = 86.3636...
$$

Sub $R = 86.36$ into (1): $P \sin 45^\circ = 10g - 86.36$ $\frac{(10 \times 9.8) - 86.36}{45\%} = 16.45...$ sin 45 $P = \frac{(10 \times 9.8) - 86.36}{\sin 45^\circ} =$ The force *P* is 16.5 N (3 s.f.).

7 **a** $v = 0$ ms⁻¹, $u = 20$ ms⁻¹, $t = 30$ s, $a = ?$ $0 = 20 + 30a$ 20 2 30 3 $v = u + at$ $a = -\frac{20}{30} = -$ Resolving vertically: *R = mg*

Since the wheels lock up, the force which causes the

deceleration is the maximum frictional force between the wheels and the track. Resolving horizontally and using Newton's second law:

$$
-\mu R = -\frac{2}{3}m
$$

$$
-\mu mg = -\frac{2}{3}m
$$

$$
\mu g = \frac{2}{3}
$$

$$
\mu = \frac{2}{3g}
$$

Mechanics 1

Solution Bank

7 b Suppose there is an added constant resistive force of air resistance, *A*, where *A* > 0 Resolving horizontally and using Newton's second law:

$$
\mu mg + A = \frac{2}{3}m
$$

$$
\mu = \frac{2}{3g} - \frac{A}{mg} < \frac{2}{3g}
$$

So the coefficient of friction found by the second model is less than the coefficient of friction found by the first model.

8

For the 3 kg mass $R(\downarrow)$ 3g - T = 3a **(1)** For the 2 kg mass $R(\sqrt[6]{}) R = 2g \cos 30 = g\sqrt{3}$ $R(\angle^2)$ T – $\mu R - 2g \sin 30 = 2a$ Since $\mu = \frac{1}{\sqrt{3}}$ $T - \frac{1}{\sqrt{3}} \times g\sqrt{3} - 2g \times \frac{1}{2} = 2a$ $T - 2g = 2a$ **(2)** Adding **(1)** and **(2)** gives $3g-T+T-2g=5a$ $a = \frac{1}{5}g \text{ (m s}^{-2})$ $5a = g$

Challenge

 $R(\nabla)$: $R = mg \cos \alpha$ Using Newton's second law of motion and $R(\mathcal{L})$: $mg \sin \alpha - \mu R = ma$ $mg \sin \alpha - \mu mg \cos \alpha = ma$ $g(\sin \alpha - \mu \cos \alpha) = a$

Since *m* does not appear in this expression, *a* is independent of *m*.

