Mechanics 1

Solution Bank

Exercise 5C

1 a i
$$R(\uparrow)$$

 $R-5g=0$
 $R=5g$
 $=49 \text{ N}$
 $\therefore F_{MAX} = \frac{1}{7} \times 49$
 -7 N

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so F = 3 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **b** i $F_{MAX} = 7 \text{ N}$ (from part **a**), and driving force is 7 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 7 N.
 - ii F is equal to the driving force of 7 N, so the body remains at rest in limiting equilibrium.
- c i $F_{MAX} = 7$ N (from part a), and driving force is 12 N, so friction will be at its maximum value of 12 N.
 - ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

$$F = ma$$

12 - 7 = 5a

 $a = 1 \,\mathrm{ms}^{-2}$

Body accelerates at 1 ms^{-2}

d i
$$R(\uparrow)$$

 $R-14-5g=0$
 $R=63 \text{ N}$
 $\therefore F_{MAX} = \mu R$
 $= \frac{1}{7} \times 63$
 $= 9 \text{ N}$

Since the driving force is only 6 N, the friction will only need to be 6 N to prevent the block from slipping, so F = 6 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- e i $F_{MAX} = 9$ N (from part d), and driving force is 9 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 9 N.

Mechanics 1

Solution Bank

- 1 e ii F is equal to the driving force of 9 N, so the body remains at rest in limiting equilibrium.
 - **f** i $F_{MAX} = 9$ N (from part **d**), and driving force is 12 N, so friction will be at its maximum value of 12 N.
 - **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

 $F = ma$
 $12-9=5a$

 $a = 0.6 \,\mathrm{ms}^{-2}$

Body accelerates at 0.6 m s^{-2}

g i
$$R(\uparrow)$$

 $R+14-5g=0$
 $R=35 \text{ N}$
 $\therefore F_{MAX} = \mu R$
 $= \frac{1}{7} \times 35$
 $= 5 \text{ N}$

Since the driving force is only 3 N, the friction will only need to be 3 N to prevent the block from slipping, so F = 3 N.

- ii Since driving force is equal to frictional force, body remains at rest in equilibrium.
- **h** i $F_{MAX} = 5$ N (from part g), and driving force is 5 N, so friction will need to be at its maximum value to prevent the block from slipping, i.e. F = 5 N.
 - ii F is equal to the driving force of 5 N, so the body remains at rest in limiting equilibrium.
- i i $F_{MAX} = 5$ N (from part g), and driving force is 6 N, so friction will be at its maximum value of 6 N
 - **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$ F = ma 6-5 = 5a $a = 0.2 \,\mathrm{m \, s^{-2}}$ Body accelerates at $0.2 \,\mathrm{m \, s^{-2}}$

Mechanics 1

Solution Bank

1 j i $R(\uparrow)$ $R+14\sin 30^\circ - 5g = 0$

 $i4\sin 30^\circ - 5g = 0$ R = 42 N $\therefore F_{MAX} = \mu R$ $= \frac{1}{7} \times 42$ = 6 N

Considering horizontal forces: Driving force $-F_{MAX} = 14\cos 30^\circ - 6 > 0$, so $F = F_{MAX} = 6$ N

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$

F = ma $14\cos 30^\circ - 6 = 5a$ $a = 1.22 \text{ ms}^{-2} (3 \text{ s.f.})$ Body accelerates at 1.22 m s⁻² (3 s.f.)

k i $R(\uparrow)$ $R + 28 \sin 30^\circ - 5g = 0$ R = 35 N $\therefore F_{MAX} = \mu R$ $= \frac{1}{7} \times 35$ = 5 NConsidering horizontal forces:

Driving force $-F_{MAX} = 28\cos 30^\circ - 5 > 0$, so $F = F_{MAX} = 5$ N

ii Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii $R(\rightarrow)$

F = ma $28 \cos 30^\circ - 5 = 5a$ $a = 3.85 \,\mathrm{m \, s^{-2}} (3 \,\mathrm{s.f.})$ Body accelerates at 3.85 m s⁻² (3 s.f.)

Mechanics 1

Solution Bank

1 I i $R(\uparrow)$ $R - 56 \cos 45^\circ - 5g = 0$ $\therefore R = 88.6 \text{ N} (3 \text{ s.f.})$ $\therefore F_{MAX} = \mu R$ $= \frac{1}{7} \times 88.6$ = 12.657 NConsidering horizontal forces:

- Driving force $-F_{MAX} = 56 \sin 45^{\circ} 12.657 > 0$, so $F = F_{MAX} = 12.7$ N (3 s.f.)
- **ii** Since the driving force is greater than the frictional force, there is a resultant force and the body accelerates.

iii
$$R(\rightarrow)$$

$$F = ma$$

 $56 \sin 45^{\circ} - 12.657 = 5a$
 $5a = 26.941$
 $a = 5.388 \,\mathrm{m \, s^{-2}}$
So the acceleration is $5.39 \,\mathrm{m \, s^{-2}}$ (3 s.f.)

2 a
$$R(\uparrow)$$

 $R + 20 \sin 30^{\circ} - 10g = 0$
 $R = 88 \text{ N}$
 $R(\rightarrow)$
 $F = ma$
 $20 \cos 30^{\circ} - \mu \times 88 = 10 \times 1$
 $\mu = 0.083 (2 \text{ s.f.})$
b $R(\uparrow)$
 $R + 20 \cos 30^{\circ} - 10g = 0$
 $R = 80.679...\text{ N}$
 $R(\rightarrow)$
 $F = ma$
 $20 \cos 60^{\circ} - \mu \times 80.679 = 10 \times 0.5$
 $\mu = 0.062 (2 \text{ s.f.})$
c $R(\uparrow)$
 $R(\rightarrow)$
 $R(\rightarrow)$
 $20\sqrt{2} \cos 45^{\circ} - \mu \times 118 = 10 \times 0.5$
 $\mu = 0.13 (2 \text{ s.f.})$

Mechanics 1

Solution Bank

3 R(ℝ): $R = 0.5g \cos 15^{\circ}$ $= 0.5 \times 9.8 \cos 15^{\circ}$ = 4.7330...Using Newton's second law of motion and R(∠): F = ma $0.5g \sin 15^{\circ} - \mu R = 0.5 \times 0.25$ $\mu R = (0.5 \times 9.8 \sin 15^{\circ}) - 0.125$ $\mu R = \frac{1.2682... - 0.125}{4.7330...}$ = 0.24153...

The coefficient of friction is 0.242 (3s.f.).

4 R(**\Backsim**):

 $R = 2g\cos 20^{\circ}$

 $= 2 \times 9.8 \cos 20^{\circ}$

Using Newton's second law of motion (F = ma) and R(\nvDash): $2g \sin 20^{\circ} - 0.3R - P = 2 \times 0.2$

 $(2 \times 9.8 \sin 20^{\circ}) - (0.3 \times 18.418...) - 0.4 = P$

$$P = 0.7782...$$

The force *P* is 0.778 N (3s.f.).

5 R(**\Gamma**):

$$R = 5g\cos 30^\circ + P\sin 30^\circ$$
$$= \frac{49\sqrt{3}}{2} + \frac{P}{2}$$

Using Newton's second law of motion and $R(\mathbf{7})$: $P\cos 30^\circ - 5g\sin 30^\circ - 0.2R = 5 \times 2$

$$P\cos 30^{\circ} = 10 + 5g\sin 30^{\circ} + \frac{1}{5}\left(\frac{P}{2} + \frac{49\sqrt{3}}{2}\right)$$
$$\left(\frac{\sqrt{3}}{2} - \frac{1}{10}\right)P = 10 + \frac{5 \times 9.8}{2} + \frac{49\sqrt{3}}{10}$$
$$\left(5\sqrt{3} - 1\right)P = 100 + 245 + 49\sqrt{3}$$
$$P = \frac{429.8704896}{7.6602...} = 56.117...$$

The force *P* is 56.1 N (3 s.f.).

Mechanics 1

6 Resolving vertically: $R + P \sin 45^\circ = 10g$ $P \sin 45^\circ = 10g - R$ (1) Resolving horizontally and using F = ma: $P \cos 45^\circ - 0.1R = 10 \times 0.3$ $P \cos 45^\circ = 3 + 0.1R$ (2) Since $\sin 45^\circ = \cos 45^\circ$, we can equate (1) and (2): 10g - R = 3 + 0.1R1.1R = 10g - 3

$$R = \frac{(10 \times 9.8) - 3}{1.1}$$

= 86.3636...

Sub R = 86.36 into (1): $P \sin 45^{\circ} = 10g - 86.36$ $(10 \times 9.8) - 86.36$

$$P = \frac{(10 \times 9.8)^{-60.56}}{\sin 45^{\circ}} = 16.45...$$

The force *P* is 16.5 N (3 s.f.).

7 **a** $v = 0 \text{ ms}^{-1}$, $u = 20 \text{ ms}^{-1}$, t = 30 s, a = ? v = u + at 0 = 20 + 30a $a = -\frac{20}{30} = -\frac{2}{3}$ Resolving vertically: R = mg

Pearson

Since the wheels lock up, the force which causes the

deceleration is the maximum frictional force between the wheels and the track. Resolving horizontally and using Newton's second law:

Solution Bank

$$-\mu R = -\frac{2}{3}m$$
$$-\mu mg = -\frac{2}{3}m$$
$$\mu g = \frac{2}{3}$$
$$\mu = \frac{2}{3g}$$

Mechanics 1

Solution Bank

7 **b** Suppose there is an added constant resistive force of air resistance, A, where A > 0Resolving horizontally and using Newton's second law:

$$\mu mg + A = \frac{2}{3}m$$
$$\mu = \frac{2}{3g} - \frac{A}{mg} < \frac{2}{3g}$$

So the coefficient of friction found by the second model is less than the coefficient of friction found by the first model.

8

For the 3 kg mass $R(\downarrow) 3g - T = 3a$ (1) For the 2 kg mass

$$R\left(\stackrel{\frown}{\searrow}\right) R = 2g\cos 30 = g\sqrt{3}$$

$$R\left(\stackrel{\frown}{\nearrow}\right) T - \mu R - 2g\sin 30 = 2a$$
Since $\mu = \frac{1}{\sqrt{3}}$

$$T - \frac{1}{\sqrt{3}} \times g\sqrt{3} - 2g \times \frac{1}{2} = 2a$$

$$T - 2g = 2a \quad (2)$$
Adding (1) and (2) gives
 $3g - T + T - 2g = 5a$
 $5a = g$

$$a = \frac{1}{5}g \text{ (m s}^{-2})$$

Challenge

R(\mathbf{K}): $R = mg \cos \alpha$ Using Newton's second law of motion and R($\mathbf{\ell}$): $mg \sin \alpha - \mu R = ma$ $mg \sin \alpha - \mu mg \cos \alpha = ma$ $g(\sin \alpha - \mu \cos \alpha) = a$

Since m does not appear in this expression, a is independent of m.

