INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

Exercise 4B

1 a (-i+3j) + (4i-j) = (3i+2j)The resultant force is (3i+2j) N.

b
$$\begin{pmatrix} 5\\ 3 \end{pmatrix} + \begin{pmatrix} -3\\ -6 \end{pmatrix} = \begin{pmatrix} 2\\ -3 \end{pmatrix}$$

The resultant force is $\begin{pmatrix} 2\\ -3 \end{pmatrix}$

c (i + j) + (5i - 3j) + (-2i - j) = (4i - 3j)The resultant force is (4i - 3j) N.

N.

d
$$\begin{pmatrix} -1 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ -7 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$

The resultant force is $\begin{pmatrix} 3 \\ -3 \end{pmatrix}$ N.

2 a
$$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = 0$$

 $\Rightarrow (2\mathbf{i} + 7\mathbf{j}) + (-3\mathbf{i} + \mathbf{j}) + \mathbf{F}_3 = 0$
 $\Rightarrow \mathbf{F}_3 = -(2\mathbf{i} + 7\mathbf{j}) - (-3\mathbf{i} + \mathbf{j})$
 $= -2\mathbf{i} - 7\mathbf{j} + 3\mathbf{i} - \mathbf{j}$
 $= \mathbf{i} - 8\mathbf{j}$

b
$$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = 0$$

 $\Rightarrow (3\mathbf{i} - 4\mathbf{j}) + (2\mathbf{i} + 3\mathbf{j}) + \mathbf{F}_3 = 0$
 $\Rightarrow \mathbf{F}_3 = -(3\mathbf{i} - 4\mathbf{j}) - (2\mathbf{i} + 3\mathbf{j})$
 $= -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{i} - 3\mathbf{j}$
 $= -5\mathbf{i} + \mathbf{j}$

3 Since object is in equilibrium:

$$\binom{a}{2b} + \binom{-2a}{-b} + \binom{3}{-4} = \binom{0}{0}$$
$$\binom{a}{2b} + \binom{-2a}{-b} = \binom{-3}{4}$$
$$\binom{-a}{b} = \binom{-3}{4}$$
$$a = 3 \text{ and } b = 4$$

4 a
$$(3i+4j)$$

Mechanics 1

Solution Bank

- 4 a i $\sqrt{3^2 + 4^2} = \sqrt{25}$ The resultant force is 5 N.
 - ii $\tan \theta = \frac{4}{3}$

The force makes an angle of 53.1° with i.

b
$$(5i - j)$$

i $\sqrt{5^2 + 1^2} = \sqrt{26}$

The resultant force is $\sqrt{26}$ N.

ii $\tan \theta = \frac{1}{5}$

The force makes an angle of 11.3° with **i**.

c
$$(-2i + 3j)$$

i
$$\sqrt{2^2 + 3^2} = \sqrt{13}$$

The resultant force is $\sqrt{13}$ N.

ii $\tan \theta = \frac{3}{2}$

 $\theta = 56.3^{\circ}$ This is the angle made with the negative **i** vector Angle made with the positive **i** vector = $180 - \theta$ The force makes an angle of 123.7° with **i**.

d

i $\sqrt{1^2 + 1^2} = \sqrt{2}$ The resultant force is $\sqrt{2}$ N.

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

4 **d** ii $\tan \theta = \frac{1}{1}$

 $\theta = 45^{\circ}$. This is the angle made with the negative **i** vector. The obtuse angle made with the positive **i** vector = $180 - \theta$ The force makes an angle of 135° with **i**.

- **5** a i (-2i + j) + (5i + 2j) + (-i 4j) = (2i j)The resultant vector is (2i - j) N.
 - **ii** $\sqrt{2^2 + 1^2} = \sqrt{5}$

The magnitude of the resultant vector is $\sqrt{5}$ N.

iii $\tan \theta = \frac{1}{2}$

 $\theta = -26.6^{\circ}$ This is the angle made from **east**, with **anticlockwise** defined as positive. The **bearing** is the angle made from **north**, with **clockwise** defined as positive = $90 - \theta$ The force acts at a bearing of 116.6° .

- **b** i (-2i + j) + (2i 3j) + (3i + 6j) = (3i + 4j)The resultant vector is (3i + 4j) N
 - **ii** $\sqrt{3^2 + 4^2} = \sqrt{25}$

The resultant force is 5 N.

iii $\tan \theta = \frac{4}{3}$

 $\theta = 53.1^{\circ}$ This is the angle made from **east**, with **anticlockwise** defined as positive. The **bearing** is the angle made from **north**, with **clockwise** defined as positive = $90 - \theta$ The force acts at a bearing of 36.9° .

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

(2)

6 Since the object is in equilibrium: $(a\mathbf{i} - b\mathbf{j}) + (b\mathbf{i} + a\mathbf{j}) + (-4\mathbf{i} - 2\mathbf{j}) = 0$ Considering \mathbf{i} components: a + b - 4 = 0so b = 4 - a (1) Considering \mathbf{j} components: -b + a - 2 = 0Substituting b = 4 - a from (1): -(4 - a) + a - 2 = 0 2a = 2 + 4 = 6a = 3 (2)

Substituting (2) into (1): b = 4 - 3 = 1The values of *a* and *b* are 3 and 1, respectively.

7 Since the object is in equilibrium: $(2a\mathbf{i} + 2b\mathbf{j}) + (-5b\mathbf{i} + 3a\mathbf{j}) + (-11\mathbf{i} - 7\mathbf{j}) = 0$

Considering i components: 2a - 5b - 11 = 0 (1)

Considering **j** components: 2b + 3a - 7 = 0

equation (1) $\times 3 \rightarrow 6a - 15b - 33 = 0$ (3) equation (2) $\times 2 \rightarrow 6a + 4b - 14 = 0$ (4)

Subtracting (4) from (3):

$$-15b - 33 - 4b - (-14) = 0$$

 $-19b = 33 - 14$
 $b = -1$
Substituting this value into equation (1):
 $2a - 5(-1) - 11 = 0$
 $2a = 11 - 5 = 6$
The values of *a* and *b* are 3 and -1, respectively.

8 a
$$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = 0$$

$$\Rightarrow (-3\mathbf{i} + 7\mathbf{j}) + (\mathbf{i} - \mathbf{j}) + (p\mathbf{i} + q\mathbf{j}) = 0$$

$$(-3 + 1 + p)\mathbf{i} + (7 - 1 + q)\mathbf{j} = 0$$

$$p = 2, \ q = -6$$

b
$$\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2$$

= $(-3\mathbf{i} + 7\mathbf{j}) + (\mathbf{i} - \mathbf{j})$
= $-2\mathbf{i} + 6\mathbf{j}$
 $|\mathbf{R}| = \sqrt{(-2)^2 + 6^2}$
= $\sqrt{4 + 36}$
= $\sqrt{40}$
= 6.32 N

Mechanics 1

Solution Bank

9 a
$$F_2 = (ai + 2aj)$$

 $\tan\theta = \frac{2a}{a} = 2$

 \mathbf{F}_2 makes an angle of 63.4° with **i**.

b
$$\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 = (3\mathbf{i} - 2\mathbf{j}) + (a\mathbf{i} + 2a\mathbf{j})$$

i vector = 3 + a j vector = -2 + 2a

In the vector $(13\mathbf{i} + 10\mathbf{j})$: \mathbf{i} vector = 13

 \mathbf{j} vector = 10

Let θ_1 = the angle of vector **R** and θ_2 = the angle of vector (13**i** + 10**j**)

Since the vectors are parallel, $\theta_1 = \theta_2$ so $\tan \theta_1 = \tan \theta_2$:

 $\tan \theta_1 = \frac{\mathbf{j} \operatorname{vector}}{\mathbf{i} \operatorname{vector}} = \frac{-2 + 2a}{3 + a} \qquad \qquad \tan \theta_2 = \frac{\mathbf{j} \operatorname{vector}}{\mathbf{i} \operatorname{vector}} = \frac{10}{13}$ $\Rightarrow \frac{-2 + 2a}{3 + a} = \frac{10}{13}$ $(-2 + 2a) \times 13 = (3 + a) \times 10$ 16a = 56a = 3.5

Mechanics 1

Solution Bank

10 a Since the particle *P* is in equilibrium:

$$\mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3} = 0$$

$$\begin{pmatrix} -7 \\ -4 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

The values are a = 3, b = 2

i $|\mathbf{R}| = \sqrt{7^2 + 4^2} = \sqrt{65}$ The magnitude of **R** is $\sqrt{65}$ N.

ii
$$\tan \theta = \frac{4}{7}$$

 $\theta = 29.7...^{\circ}$
R acts at 30° above the horizontal (to 2 s.f.)

Challenge

Redrawing the diagram as a closed triangle:

 $\tan 60 = \frac{a}{10}$ $a = 10 \tan 60 = 10 \times \sqrt{3}$

$$\mathbf{R} = \begin{pmatrix} 10 \\ a \end{pmatrix} = \begin{pmatrix} 10 \\ 10\sqrt{3} \end{pmatrix}$$
$$|\mathbf{R}| = \sqrt{10^2 + (10\sqrt{3})^2} = \sqrt{100 + 300} = \sqrt{400}$$

The value of a is 17.3 (to 3 s.f.), and the magnitude of the resultant force is 20 N.