Solution Bank

Exercise 3A

1 Let the initial position of the bird be *O* and the final position be *F*

By Pythagoras' theorem

$$OF^{2} = 5^{2} + 7^{2}$$

= 74
 $OF = \sqrt{74}$
= 8.60 km (3 s.f.)

Let the bearing of F from O be θ

$$\tan \theta = \frac{7}{5}$$

 $\theta = 054^{\circ}$ (to the nearest degree)

2 Let the initial position of the girl be *O* and the final position be *F*

The total distance cycled by the girl is 4 + 6 = 10 km

Her displacement from O is |OF|

Her displacement from

$$OF^2 = 4^2 + 6^2$$

= 52
 $OF = \sqrt{52}$
= 7.21 km (3 s.f.)

3 a
$$\mathbf{v}_1 = 4\mathbf{i}$$

 $\mathbf{v}_2 = 5\mathbf{i} + 2\mathbf{j}$
 $\mathbf{v}_3 = -3\mathbf{i} + \mathbf{j}$
 $\mathbf{v}_4 = 2\mathbf{i} + 3\mathbf{j}$
 $\mathbf{v}_5 = -2\mathbf{i} - \mathbf{j}$
 $\mathbf{v}_6 = -3\mathbf{j}$

b i
$$\mathbf{v}_1 + \mathbf{v}_2 = 4\mathbf{i} + 5\mathbf{i} + 2\mathbf{j}$$

= $9\mathbf{i} + 2\mathbf{j}$
ii $\mathbf{v}_4 + \mathbf{v}_5 = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{i} - \mathbf{j}$
= $2\mathbf{j}$
iii $\mathbf{v}_6 + \mathbf{v}_1 + \mathbf{v}_5 = -3\mathbf{j} + 4\mathbf{i} - 2\mathbf{i} - \mathbf{j}$

 $=2\mathbf{i}-4\mathbf{j}$

4 a
$$|3\mathbf{i} + 4\mathbf{j}| = \sqrt{3^2 + 4^2}$$

= $\sqrt{9 + 16}$
= $\sqrt{25}$
= 5

b
$$|6\mathbf{i} - 8\mathbf{j}| = \sqrt{6^2 + 8^2}$$

= $\sqrt{36 + 64}$
= $\sqrt{100}$
= 10

$$\mathbf{c} \quad |5\mathbf{i} + 12\mathbf{j}| = \sqrt{5^2 + 12^2}$$
$$= \sqrt{25 + 144}$$
$$= \sqrt{169}$$
$$= 13$$

d
$$|2\mathbf{i} + 4\mathbf{j}| = \sqrt{2^2 + 4^2}$$

= $\sqrt{4 + 16}$
= $\sqrt{20}$
= 4.47 (3 s.f.)

e
$$|3\mathbf{i} - 5\mathbf{j}| = \sqrt{3^2 + 5^2}$$

= $\sqrt{9 + 25}$
= $\sqrt{34}$
= 5.83 (3 s.f.)

1

Mechanics 1

Solution Bank

Pearson

4 **f**
$$|4\mathbf{i} + 7\mathbf{j}| = \sqrt{4^2 + 7^2}$$

= $\sqrt{16 + 49}$
= $\sqrt{65}$
= 8.06 (3 s.f.)

$$\mathbf{g} \quad |-3\mathbf{i} + 5\mathbf{j}| = \sqrt{3^2 + 5^2}$$

$$= \sqrt{9 + 25}$$

$$= \sqrt{34}$$

$$= 5.83 (3 \text{ s.f.})$$

h
$$|-4\mathbf{i} + -\mathbf{j}| = \sqrt{4^2 + 1^2}$$

= $\sqrt{16 + 1}$
= $\sqrt{17}$
= 4.12 (3 s.f.)

5 **a**
$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} \text{ and } \mathbf{c} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$

$$|\mathbf{a} + \mathbf{b}| = \sqrt{5^2 + (-1)^2}$$

$$= \sqrt{26}$$

$$\mathbf{b} \quad 2\mathbf{a} - \mathbf{c} = 2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 5 \\ -5 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$
$$|2\mathbf{a} - \mathbf{c}| = \sqrt{(-1)^2 + 7^2}$$
$$= \sqrt{50}$$
$$= 5\sqrt{2}$$

$$\mathbf{c} \quad 3\mathbf{b} - 2\mathbf{c} = 3 \begin{pmatrix} 3 \\ -4 \end{pmatrix} - 2 \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 \\ -10 \end{pmatrix}$$
$$|3\mathbf{b} - 2\mathbf{c}| = \sqrt{(-1)^2 + (-10)^2}$$
$$= \sqrt{101}$$

6 a
$$3i + 4j$$

$$\theta$$

$$\tan^{-1}\left(\frac{4}{3}\right) = 53.1^{\circ} \text{ above (3 s.f.)}$$

Mechanics 1

Solution Bank

$$90^{\circ} + \tan^{-1}\left(\frac{5}{3}\right) = 90^{\circ} + 59^{\circ}$$

= 149° (3 s.f.) to the right

$$\tan^{-1}\left(\frac{4}{7}\right) = 29.7^{\circ} (3 \text{ s.f.}) \text{ to the right}$$

$$\tan^{-1}\left(\frac{3}{5}\right) = 31.0^{\circ} (3 \text{ s.f.}) \text{ to the left}$$

7 d -4i - j

$$90^{\circ} + \tan^{-1} \left(\frac{1}{4}\right) = 90^{\circ} + 14^{\circ}$$

= 104° (3 s.f.) to the left

Challenge

Area of parallelogram = area of large blue rectangle - 2(area of small red rectangle) – 2(area of triangle 1)

$$= (p+r)(q+s) - 2(qr) - 2(\frac{1}{2}pq) - 2(\frac{1}{2}rs)$$

= $pq + ps + qr + rs - 2qr - pq - rs = ps - qr$