Solution Bank

Exercise 2E

1 a = 2.5, u = 3, s = 8, v = ?

 $v^{2} = u^{2} + 2as = 3^{2} + 2 \times 2.5 \times 8 = 9 + 40 = 49$ $v = \sqrt{49} = 7$

The velocity of the particle as it passes through B is 7 m s^{-1} .

2 u = 8, t = 6, s = 60, a = ?

$$s = ut + \frac{1}{2}at^{2}$$

$$60 = 8 \times 6 + \frac{1}{2} \times a \times 6^{2} = 48 + 18a$$

$$a = \frac{60 - 48}{18} = \frac{2}{3}$$

The acceleration of the car is $0.667 \,\mathrm{m \, s^{-2}}$ (to 3 s.f.)

- **3** u = 12, v = 0, s = 36, a = ?
 - $v^{2} = u^{2} + 2as$ $0^{2} = 12^{2} + 2 \times a \times 36 = 144 + 72a$ $a = -\frac{144}{72} = -2$ The deceleration is 2 ms⁻².
- 4 u = 15, v = 20, s = 500, a = ? $54 \text{ km h}^{-1} = \frac{54 \times 1000}{3600} \text{ m s}^{-1} = 15 \text{ m s}^{-1}$

$$72 \text{ km h}^{-1} = \frac{72 \times 1000}{3600} \text{ m s}^{-1} = 20 \text{ m s}^{-1}$$
$$v^{2} = u^{2} + 2as$$
$$20^{2} = 15^{2} + 2 \times a \times 500$$
$$400 = 225 + 1000a$$
$$a = \frac{400 - 225}{1000} = 0.175$$

The acceleration of the train is $0.175 \,\mathrm{m \, s^{-2}}$.

5 a
$$s = 48$$
, $u = 4$, $v = 16$, $a = ?$
 $v^2 = u^2 + 2as$
 $16^2 = 4^2 + 2 \times a \times 48$

Solution Bank

5 a 256 = 16 + 96a $a = \frac{256 - 16}{96} = 2.5$

The acceleration of the particle is $2.5 \,\mathrm{m\,s^{-2}}$.

b
$$u = 4$$
, $v = 16$, $a = 2.5$, $t = ?$

$$v = u + at$$

 $16 = 4 + 2.5t$
 $t = \frac{16 - 4}{2.5} = 4.8$

The time taken to move from A to B is 4.8 s.

6 a
$$a = 3, s = 38, t = 4, u = ?$$

$$s = ut + \frac{1}{2}at^{2}$$

$$38 = 4u + \frac{1}{2} \times 3 \times 4^{2} = 4u + 24$$

$$u = \frac{38 - 24}{4} = 3.5$$

The initial velocity of the particle is $3.5 \,\mathrm{m \, s^{-1}}$.

b
$$a = 3, t = 4, u = 3.5, v = ?$$

$$v = u + at = 3.5 + 3 \times 4 = 15.5$$

The final velocity of the particle is $15.5 \,\mathrm{m \, s^{-1}}$.

7 **a**
$$u = 18$$
, $v = 0$, $a = -3$, $s = ?$

$$v^{2} = u^{2} + 2as$$

$$0^{2} = 18^{2} + 2 \times (-3) \times s = 324 - 6s$$

$$s = \frac{324}{6} = 54$$

The distance travelled as the car decelerates is 54 m.

b u = 18, v = 0, a = -3, t = ?

$$v = u + at$$
$$0 = 18 - 3t$$
$$t = \frac{18}{3} = 6$$

The time taken for the car to decelerate is 6 s.

Solution Bank

8 a u = 12, v = 0, a = -0.8, s = ?

$$v^{2} = u^{2} + 2as$$

 $0^{2} = 12^{2} + 2 \times (-0.8) \times s = 144 - 1.6s$
 $s = \frac{144}{1.6} = 90$

The distance moved by the stone is 90 m.

b Half the distance in **a** is 45 m.

$$u = 12, a = -0.8, s = 45, v = ?$$

 $v^2 = u^2 + 2as$
 $= 12^2 + 2 \times (-0.8) \times 45 = 144 - 72 = 72$
 $v = \sqrt{72} = 8.49$ (to 3 s.f.)

The speed of the stone is $8.49 \,\mathrm{m \, s^{-1}}$.

9 a
$$a = 2.5, u = 8, s = 40, t = ?$$

$$s = ut + \frac{1}{2}at^{2}$$

$$40 = 8t + 1.25t^{2}$$

$$0 = 1.25t^{2} + 8t - 40$$

$$t = \frac{-(8) \pm \sqrt{(8)^{2} - 4 \times (1.25) \times (-40)}}{2 \times (1.25)}$$

$$t = \frac{-8 + \sqrt{264}}{2.5} = 3.30 \text{ (to 3 s.f.)}$$

The time taken for the particle to move from O to A is 3.30 s.

b
$$a = 2.5, u = 8, s = 40, v = ?$$

$$v^{2} = u^{2} + 2as$$

= $8^{2} + 2 \times 2.5 \times 40 = 264$
 $v = \sqrt{264} = 16.2$ (to 3 s.f.)

The speed of the particle at A is $16.2 \,\mathrm{m \, s^{-1}}$.

10 a
$$a = -2$$
, $s = 32$, $u = 12$, $t = ?$

$$s = ut + \frac{1}{2}at^{2}$$
$$32 = 12t - t^{2}$$
$$t^{2} - 12t + 32 = (t - 4)(t - 8) = 0$$

So t = 4 or t = 8.

Solution Bank

10 b When t = 4,

 $v = u + at = 12 - 2 \times 4 = 4$

The velocity is 4 m s^{-1} in the direction \overrightarrow{AB} .

When t = 8,

 $v = u + at = 12 - 2 \times 8 = -4$

The velocity is 4 m s^{-1} in the direction \overrightarrow{BA} .

11 a
$$a = -5$$
, $u = 12$, $s = 8$, $t = ?$

$$s = ut + \frac{1}{2}at^{2}$$

$$8 = 12t - 2.5t^{2}$$

$$2.5t^{2} - 12t + 8 = 0$$

$$5t^{2} - 24t + 16 = (5t - 4)(t - 4) = 0$$

So
$$t = 0.8$$
 or $t = 4$.

b
$$a = -5, u = 12, s = -8, v = ?$$

$$v^{2} = u^{2} + 2as$$

= 12² + 2×(-5)×(-8)
= 144 + 80 = 224
 $v = \sqrt{224} = 15.0$ (to 3 s.f.)

The velocity at x = -8 is 15.0 m s^{-1} .

12 a
$$a = -4$$
, $u = 14$, $s = 22.5$, $t = ?$

$$s = ut + \frac{1}{2}at^{2}$$

$$22.5 = 14t - 2t^{2}$$

$$2t^{2} - 14t + 22.5 = 0$$

$$4t^{2} - 28t + 45 = (2t - 5)(2t - 9) = 0$$

The difference between the times is (4.5 - 2.5) s = 2 s.

b The maximum distance is reached when *P* reverses direction. a = -4, u = 14, v = 0, t = ?

v = u + at $0 = 14 - 4t \Longrightarrow t = \frac{14}{4} = 3.5$

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

- **12 b** Find the displacement when t = 3.5.
 - $s = ut + \frac{1}{2}at^{2}$ = 14 × 3.5 - 2 × 3.5² = 24.5

Between t = 2.5 and t = 4.5 the particle moves back and forward.

Hence total distance travelled = $2 \times (24.5 - 22.5)$ m = 4 m.

13 a From *B* to *C*, u = 14, v = 20, s = 300, a = ?

$$v^{2} = u^{2} + 2as$$

$$20^{2} = 14^{2} + 2 \times a \times 300$$

$$a = \frac{20^{2} - 14^{2}}{600} = 0.34$$

The acceleration of the car is 0.34 m s^{-2} .

b From A to C, v = 20, s = 400, a = 0.34, u = ?

$$v^{2} = u^{2} + 2as$$

$$20^{2} = u^{2} + 2 \times 0.34 \times 400 = u^{2} + 272$$

$$u^{2} = 400 - 272 = 128$$

$$u = \pm \sqrt{128} = \pm 8\sqrt{2}$$

Assuming the car is not in reverse at A, $u = +8\sqrt{2}$

$$v = u + at$$

20 = $8\sqrt{2} + 0.34t$
 $t = \frac{20 - 8\sqrt{2}}{0.34} = 25.5$ (to 3 s.f.)

The time taken for the car to travel from A to C is 25.5 s.

14 a For *P*, a = 2, u = 4

$$s = ut + \frac{1}{2}at^{2}$$

= $4t + \frac{1}{2} \times 2t^{2} = 4t + t^{2}$

The displacement of *P* is $(4t + t^2)$ m.

For
$$Q$$
, $a = 3.6$, $u = 3$

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

14 a Q has been moving for (t-1) seconds since passing through A, so

$$s = u(t-1) + \frac{1}{2}a(t-1)^{2}$$

= 3(t-1) + 1.8(t-1)^{2} = 1.8t^{2} - 0.6t - 1.2

The displacement of Q is $(1.8t^2 - 0.6t - 1.2)$ m.

b *P* and *Q* meet when $s_P = s_Q$, so, from **a**:

$$4t + t^{2} = 1.8t^{2} - 0.6t - 1.2$$
$$0.8t^{2} - 4.6t - 1.2 = 0$$

Divide throughout by 0.2:

$$4t^{2} - 23t - 6 = 0$$

(t-6)(4t+1) = 0

Rejecting a negative solution for time, t = 6.

c Substitute t = 6 into the equation for one of the displacements (here *P*):

 $s = 4t + t^2 = 4 \times 6 + 6^2 = 60$

The distance of A from the point where the particles meet is 60 m.

a Let the velocity as the competitor passes point Q be v_Q

For
$$PQ$$
, $s = 2.4$, $t = 1$, $v = v_Q$

$$s = vt - \frac{1}{2}at^{2}$$

2.4 = $v_{Q} \times 1 - \frac{1}{2}(a \times 1^{2}) = v_{Q} - \frac{1}{2}a$
 $v_{Q} = 2.4 + 0.5a$

For QR, s = 11.5, t = 1.5, $u = v_Q$

$$s = ut + \frac{1}{2}at^{2}$$

11.5 = $v_{o} \times 1.5 + \frac{1}{2}a \times 1.5^{2} = 1.5v_{o} + 1.125a$

Solution Bank

15 a Substituting for v_Q :

$$11.5 = 1.5(2.4 + 0.5a) + 1.125a$$
$$= 3.6 + 0.75a + 1.125a$$
$$11.5 - 3.6 = (0.75 + 1.125)a$$
$$a = \frac{11.5 - 3.6}{0.75 + 1.125} = \frac{7.9}{1.875} = 4.21 \text{ (to 3 s.f.)}$$

The acceleration is 4.21 km h^{-2} .

4.21 km h⁻² =
$$\frac{4.21 \times 1000}{3600 \times 3600}$$
 m s⁻² = 3.25×10⁻⁴ m s⁻² (to 3 s.f.)

So her acceleration is $3.25 \times 10^{-4} \text{ m s}^{-2}$.

b For PQ, s = 2.4, t = 1, a = 4.21, u = ?, using exact figures

$$s = ut + \frac{1}{2}at^{2}$$

2.4 = u×1+ $\frac{1}{2}$ × $\frac{7.9}{1.875}$ ×1²
u = 0.293 (to 3 s.f.)

 $0.293 \text{ km h}^{-1} = \frac{0.293 \times 1000}{3600} \text{ m s}^{-1} = 0.0815 \text{ m s}^{-1}$ (to 3 s.f.)