GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M1

Paper J

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

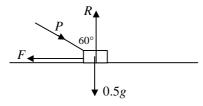
Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press


These sheets may be copied for use solely by the purchaser's institute.

(8)

M1 Paper J - Marking Guide

1. (a) speed =
$$17 = \text{mag. of vel.} = \sqrt{(8^2 + \lambda^2)}$$
 M1
 $\lambda^2 = 289 - 64 = 225; \ \lambda > 0 \text{ so } \lambda = 15$ M1 A1

(b)
$$a = \frac{\Delta v}{t} = \frac{1}{5} [(3\mathbf{i} + 5\mathbf{j}) - (8\mathbf{i} + 15\mathbf{j})] = ^{-}\mathbf{i} - 2\mathbf{j}$$
 M2 A1
 $\mathbf{F} = m\mathbf{a} = 2(^{-}\mathbf{i} - 2\mathbf{j}) = ^{-}2(\mathbf{i} + 2\mathbf{j}) \text{ so } \mu = ^{-}2$ M1 A1 (8)

resolve
$$\uparrow : R - P\cos 60^{\circ} - 0.5g = 0$$
 : $R = 0.5g + P\cos 60^{\circ}$ M1 A1 resolve $\rightarrow : P\sin 60^{\circ} - F = 0$ M1 $F = \mu R = \frac{1}{\sqrt{3}} (0.5g + 0.5P)$ M1 A1 sub. in giving $\frac{\sqrt{3}}{2} P - \frac{1}{\sqrt{3}} (0.5g + 0.5P) = 0$ M1

$$3P - P - g = 0$$
 : $2P = g$ so $P = \frac{g}{2}$

(b) brush is moved slowly so very little air resistance B1

3. (a) cons. of mom:
$$1500(2) + 0 = (1500 + 750)V$$
 M1
 $3000 = 2250V : V = \frac{4}{3}$ M1 A1

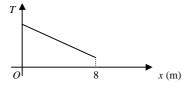
(b) impulse =
$$\Delta \text{ mom } = 750(\frac{4}{3} - 0) = 1000 \text{ Ns}$$
 M1 A1

(c) car has
$$(27 + 9)$$
 m in which to stop and travels 18 m in first second must stop from 18 ms⁻¹ in 18 m A1

 $u = 18$, $s = 18$, $v = 0$, $a = f$ M1

 $v^2 = u^2 + 2as$, so $0 = 324 - 36f$ M1

 $f = 9$ so to stop before hitting other car, $f > 9$ A1 (10)


4. (a) eqn. of motion for A:
$$T - 6g = 6a$$
 (1) M1 eqn. of motion for B & C: $8g - T = 8a$ (2) M1 (1) + (2) gives $2g = 14a$ i.e. $a = \frac{g}{7}$ ms⁻² M1 A1

(b) sub.
$$a$$
 into (1) to get $T = 6a + 6g = \frac{6g}{7} + 6g$ M1
force on pulley = $2T = \frac{96g}{7}$ M1 A1

(c) resolve
$$\downarrow$$
 for C: $3g - R = 3 \times \frac{g}{7}$ M1
$$R = 3g - \frac{3g}{7} = \frac{18g}{7}$$
 M1 A1 (10)

- 5. (a) For Q: $a = \frac{\Delta v}{t} = \frac{6-0}{6} = 1$ M1 u = 0, v = 4, use v = u + at: 4 = 0 + 1t i.e. t = 4 seconds M1 A1

 - (c) Q will catch P when area under Q graph = area under P graph $\therefore \frac{1}{2} (6)(6) + 6(t 6) = 4t$ M1
 i.e. $18 + 6t 36 = 4t \therefore 2t = 18 \therefore t = 9$ after 9 seconds, P has travelled $4 \times 9 = 36$ cm, $\therefore Q \text{ reaches top first if } x > 36$ M1 A1 (11)
- **6.** (a) as rock moves further from A, tension at A decreases linearly and is a minimum when rock reaches B.

dist. between = $\sqrt{(3^2 + 4^2)} = 5 \text{ km}$

В3

- (b) max. tension when rock at one end (A, say) B1 moments about $B: 50g(4) + Mg(8) T_A(8) = 0$ M1 $8Mg = 8T_A 200g : Mg = T_A 25g$ M1 given $T_A \le 40g$; $Mg \le 40g 25g$ (= 15g) M1 i.e. $M \le 15$
- (c) assume rock placed as close to A as poss. so that $T_A = 40g$ resolve (\uparrow): $T_A + T_B = 50g + 20g = 70g$ \therefore $T_B = 30g$ M1 A1 moments about centre of plank : $T_A = (4) T_B = (4) 20g(d) = 0$ M1 160g 120g 20gd = 0 \therefore d = 2 M1 A1 rock can be 2 m either side of centre i.e. 4 m out of 8 m = $\frac{1}{2}$ plank A1 (14)
- 7. cargo ship travels $(9t\mathbf{i} - 6t\mathbf{j})$ km in t hours *(a)* posⁿ vector after t hours is $[(7\mathbf{i} + 56\mathbf{j}) + (9t\mathbf{i} - 6t\mathbf{j})]$ km M1= $[(7 + 9t)\mathbf{i} + (56 - 6t)\mathbf{j}]$ km A1 pos^n vector of ferry after t hours is $(12t\mathbf{i} + 18t\mathbf{j})$ km **A**1 they will collide if coeffs. of \mathbf{i} and \mathbf{j} in posⁿ vectors are equal **B**1 *(b)* 7 + 9t = 12t and 56 - 6t = 18t are both satisfied when $t = \frac{7}{3}$ M1 A1 collision after $\frac{7}{3}$ hrs or 2 hrs 20 mins i.e. at 8:20 a.m. A1 $pos^{n} \ vector = 12(\frac{7}{3})\mathbf{i} + 18(\frac{7}{3})\mathbf{j} = (28\mathbf{i} + 42\mathbf{j})$ M1 A1 at 8 a.m. ferry at (24i + 36j)(c) $\frac{1}{3}$ hr at 21i + 6j = 7i + 2j so at 8:20 a.m. ferry is at 31i + 38jM2 A1 at 8:20 a.m cargo ship is at (28i + 42j)

Total (75)

M1 A1

Performance Record – M1 Paper J

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i, j, F = ma	statics, friction	cons. of mom., impulse, uniform accel.	connected bodies	speed - time graph, uniform accel.	moments	rel. posn. i, j	
Marks	8	8	10	10	11	14	14	75
Student								