

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4728

Mechanics 1

MARK SCHEME

Specimen Paper

MAXIMUM MARK 72

1	E-4	400 = 6000×2	B1		For resultant force $E-400$ stated or implied
1	2	100 0000/12	M1		For use of Newton II for the truck
			A1√ A1		For the correct equation
	Hence $E = 1600$				For correct answer 1600
				4	
2	EITE	$HER: R\cos\theta = 8 + 5\cos 30^{\circ}$	M1		For attempt at resolving \parallel or \perp to 8 N force
		$R\sin\theta = 5\sin 30^{\circ}$	A1 A1		For a second correct equation
					For a second correct equation
		Hence $R^2 = (12.33)^2 + 2.5^2$	M1 A1√		For correct method for either unknown For correct value
		R = 12.6	AIV		
		$\tan \theta = \frac{2.5}{12.33}$	M1		For correct method for second unknown
		$\theta = 11.5$	A1√		For correct value
	OR:	Triangle of forces has 5, 8, R and 150°	M1		For considering any triangle with 5, 8, R
		-2 -2 -2	A1		For correct triangle drawn or used
		$R^2 = 8^2 + 5^2 - 2 \times 5 \times 8 \times \cos 150^\circ$	M1		For use of cosine formula attempted
		Hence $R = 12.6$	A1 A1√		For correct expression for R^2 For correct value
		$\sin \theta = \frac{5\sin 150^{\circ}}{12.58} = 0.1987$	M1		For use of sine formula with numerical <i>R</i>
		Hence $\theta = 11.5$	A1√	7	For correct value
				7	
3	(i)	$0 = 28^2 - 2 \times 9.8 \times h$	M1		For use of const acc formula(s) to find h
		Hence maximum height is 40 m	A1	2	For correct value 40
	(ii)	$v^2 = 28^2 - 2 \times 9.8 \times 30$	M1		For use of const acc formula(s) to find <i>v</i>
	` '		A1		For correct equation in v
		Hence speed is 14 m s ⁻¹	A1	3	For correct value 14
	(iii)	$10 = \frac{1}{2} \times 9.8t^2$	M1		For use of const acc formula(s) to find <i>t</i>
	` ′	2	A1√		For correct equation in t
		Hence time is $\frac{10}{7} \approx 1.43 \mathrm{s}$	A1	3	For correct value $\frac{10}{7}$ or equivalent
	 (iv)	Length of time is $2 \times \frac{10}{7} = \frac{20}{7}$ s	M1		For doubling, or equiv longer method
	(= .)		A1√	2	For correct value, i.e. double their (iii)
			1110	10	To correct value, i.e. double their (III)
4	(i)	Total distance is $3\times30+3\times30+3\times30=270 \text{ m}$	M1		For any calculation of a rectangular area
			M1		For addition of three positive areas
			A1	3	For correct value 270
	(ii)	Distance at $t = 50$ is $90 - 60 = 30$ m	M1		For correct use of signed areas
		Distance at $t = 90$ is 60 m	A1	2	For correct value 60
		Distance at $t = 80$ is 60 m	A1		For correct value 60
	(iii)	Child's speed is $\frac{30}{50} = 0.6 \text{ m s}^{-1}$	B1√		For distance 30 m
			M1		For dividing by 50
			A1	3	For correct value 0.6
	(iv)	Child walks $60-30=30 \text{ m}$ in next 30 s	B1√		For child's distance gone from $t = 50$ to 80
		Hence $30 = \frac{1}{2}(0.6 + v) \times 30$	M1		For suitable use of $s = \frac{1}{2}(u+v)t$ or equiv
		i.e. child's speed is $1.4~\mathrm{m~s^{-1}}$	A1		For correct value 1.4
				12	

5	(i)	$v = \int -\frac{1}{10}t dt = -\frac{1}{20}t^2 + c$	M1		For integrating the acceleration formula
			A1		For $v = -\frac{1}{20}t^2$, with or without <i>c</i>
		V = 0 + c	M1		For using $v = V$ when $t = 0$ to find c
		Hence $v = V - \frac{1}{20}t^2$	A1	4	For correct equation for v in terms of t and V
	(ii)	$0 = V - \frac{10^2}{20} \Rightarrow V = 5$	M1		For use of given values to find V
			A1	2	For correct value 5
	(iii)	$s = \int (5 - \frac{1}{20}t^2) dt = 5t - \frac{1}{60}t^3 + k$	M1		For any attempt to integrate velocity
		•	A1√		For correct integration (ignoring <i>k</i>)
		Hence displacement is $50 - \frac{1000}{60} = 33\frac{1}{3}$ m	M1		For evaluation of s when $t = 10$
		60	A1√	4	For correct value $33\frac{1}{3}$; allow omission of k
	(iv)	Returns to <i>O</i> when $0 = -\frac{1}{60}t^3 + 5t \Rightarrow t^2 = 300$	M1		For attempting non-zero root of $s = 0$
		When $t^2 = 300$, $v = -\frac{1}{20} \times 300 + 5$	M1		For consequent evaluation of <i>v</i>
		i.e. speed is $10 \mathrm{m s}^{-1}$	A1	3	For correct value 3 (allow negative here)
		i.e. speed is 10 iii s		3	Tor correct value 3 (allow negative here)
				13	
6	(i)	$0.3 \times 3.2 = 0.3 \times 0.8 + 0.4 \times b$	M1		For using conservation of momentum
	(1)	0.373.2 = 0.370.0 1 0.170	A1		For correct LHS
			A1		For correct RHS
		Hence $b = 1.8$ so B's speed is 1.8 m s^{-1}	A1	4	For correct value 1.8 correctly obtained
	(ii)	$0.4 \times 1.8 - 3.2m = -0.4 \times 3.1 - 0.4m$	M1		For momentum equn with at least one relevant negative sign
			A1		For correct LHS
			A1		For correct RHS
		Hence $m = 0.7$	A1	4	For correct value 0.4 correctly obtained
	(iii)	$0.4\times3.1>0.3\times0.8$, so net momentum of A and B			
		is towards the left and therefore they can't both			
		move towards the right after the impact	B1	1	For correctly explained application of momentum conservation.
	(iv)	Total momentum of all three particles is leftwards Hence A ends up moving left, as if it moves right	M1		For reasoning based on the total momentum
		after all collisions so do B and C	A1		For correct conclusion regarding direction
		Total momentum left is at most 1.4a	M1		For use of the idea that $a \ge b \ge c$
		Hence $1.4a \ge 0.7 \times 3.2 - 0.3 \times 3.2$, so the speed of			
		A is at least 0.914 m s^{-1}	A1	4	For correct conclusion
				13	
1					

4728 Specimen Paper [Turn over

			1		
7	(i)	Acceleration is $\frac{0.8}{10} = 0.08 \text{ m s}^{-2}$	B1		For 0.8÷10 stated or implied
		$R = 25g\cos 30^{\circ}$	B1		For correct resolving \(\pri \) plane
		$T - 25g \sin 30^{\circ} - 0.2 \times 25g \cos 30^{\circ} = 25 \times 0.08$	M1		For attempting Newton II plane
			B1		For upwards force $T - 25g \sin 30^{\circ} - F$
			B1√		For $F = 0.2 \times 25 g \cos 30^{\circ}$
		Hence the tension is 167 N	A1	6	For correct value 167
	(ii)	$R' = P \sin 30^{\circ} + 175 g \cos 30^{\circ}$	M1		For resolving \(\perp\) plane, with 3 forces
		Ç	A1		For correct equation
		$P\cos 30^{\circ} + 0.2R' = 175g\sin 30^{\circ}$	M1		For resolving plane, with 3 forces
			A1		For correct equation
		$P(\cos 30^{\circ} + 0.2\sin 30^{\circ}) = 175g(\sin 30^{\circ} - 0.2\cos 30^{\circ})$	M1		For attempting elimination of R'
		Hence $P = \frac{175g(\sin 30^{\circ} - 0.2\cos 30^{\circ})}{\cos 30^{\circ} + 0.2\sin 30^{\circ}} = 580$	M1		For solving a relevant equation for <i>P</i>
		$\cos 30^{\circ} + 0.2 \sin 30^{\circ}$	A1	7	For correct value 580
				,	To contest value 500
				40	
				13	
Ī			I		