

Mathematics (MEI)

Advanced Subsidiary GCE 4761

Mechanics 1

Mark Scheme for June 2010

PMT

PMT

Mark Scheme

4761

June	201	0
------	-----	---

Q 1		mark	notes
(i)	$v^2 = 0^2 + 2 \times 9.8 \times 0.75$ $v = \pm 3.8340$ so 3.83 m s ⁻¹ (3. s. f.)	M1 A1 A1 3	Use of $v^2 = u^2 + 2as$ with $u = 0$ and $a = \pm g$. Accept muddled units and sign errors. Allow wrong or wrongly converted units not sign errors cao [SC2 for 38.3 seen WWW and SC3 for 3.83 seen WWW]
		3	

Q 2		mark	notes
(i)	Resolving	M1	Resolving in at least 1 of horiz or vert. Accept $sin \leftrightarrow cos$. No extra terms.
	← $250\sin 70 = 234.92$ so $235 \text{ N} (3 \text{ s. f.})$	A1	Either both expressions correct (neglect direction) or one correct in correct direction
	\uparrow 250 cos 70 = 85.5050 so 85.5 N (3 s. f.)	A1 3	cao Both evaluated and directions correct
(ii)	$250 \div 2 = 125 \text{ N}$	B1 1	Accept $125g$ only if tension taken to be $250g$ in (i)
		4	

Q 3		mark	notes
(i)	$\begin{pmatrix} -1\\ 14\\ -8 \end{pmatrix} + \begin{pmatrix} 3\\ -9\\ 10 \end{pmatrix} + \mathbf{F} = 4 \begin{pmatrix} -1\\ 2\\ 4 \end{pmatrix}$	M1	N2L. Allow sign errors in applying N2L. Do not condone $\mathbf{F} = mg\mathbf{a}$. Allow one given force omitted.
		M1	Attempt to add $\begin{pmatrix} -1\\14\\-8 \end{pmatrix}$ and $\begin{pmatrix} 3\\-9\\10 \end{pmatrix}$
	$\mathbf{F} = \begin{pmatrix} -6\\3\\14 \end{pmatrix}$	A1 A1 4	Two components correct cao
(ii)	$\mathbf{v} = \begin{pmatrix} -3\\3\\6 \end{pmatrix} + 3 \begin{pmatrix} -1\\2\\4 \end{pmatrix} = \begin{pmatrix} -6\\9\\18 \end{pmatrix} \text{ so } \begin{pmatrix} -6\\9\\18 \end{pmatrix} \text{ m s}^{-1}.$ speed is $\sqrt{(-6)^2 + 9^2 + 18^2} = 21 \text{ m s}^{-1}.$	M1 A1 M1 F1	$\mathbf{v} = \mathbf{u} + t\mathbf{a}$ with given \mathbf{u} and \mathbf{a} . Could go via \mathbf{s} . If integration used, require arbitrary constant (need not be evaluated) cao isw Allow -6^2 even if interpreted as -36 . Only FT their v . FT their \mathbf{v} only. [Award M1 F1 for 21 seen WWW]
		8	

Q 4		mark	notes
(i)	Diagram for P or Q Other diagram	B1 B1 2	Must be properly labelled with arrows Must be properly labelled with arrows consistent with 1 st diagram Accept single diagram if clear.
(ii)	Let tension in rope be T N and accn $\uparrow a$ m s ⁻² For box P: N2L \uparrow	M1	N2L applied correctly to either part. Allow $F = mga$ and sign errors. Do not condone missing or extra forces.
	$1030 - 75g - T = 75a$ For how Q: N2L \uparrow	A1	
	T - 25g = 25a	A1 3	Direction of a consistent with equation for P. [Condone taking + ve downwards in either equation. +ve direction must be consistent in both equations to receive both A1s]
(iii)	tension is 257.5 N	M1 A1	Solving for <i>T</i> their simultaneous equations with 2 variables. cao CWO
		2 7	

Q 5		mark	notes
(i)	$270 - \arctan\left(\frac{6}{4}\right)$ = 213.69 so 214°	M1 A1 2	Award for arctan <i>p</i> seen where $p = \pm \frac{6}{4}$ or $\frac{4}{6}$, or equivalent cao
(ii)	Need $(-4 + 3k)\mathbf{i} + (-6 - 2k)\mathbf{j} = \lambda(7\mathbf{i} - 9\mathbf{j}) *$	M1	Attempt to get LHS in the direction of $(7\mathbf{i} - 9\mathbf{j})$. Could be done by finding (tangents of) angles. Accept the use of $\lambda = 1$.
	either so $\frac{-4+3k}{-6-2k} = \frac{7}{-9}$. or equivalent k = 6 or $-4+3k = 7\lambda$ $-6-2k = -9\lambda$ k = 6 trial and error method	M1 A1 A1 A1 A1 A1	Attempt to solve their *. Allow = $\frac{7}{9}, \frac{9}{7}, -\frac{9}{7}$ Expression correct Award full marks for $k = 6$ found WWW Attempt to solve their *. Must have both equations. Correct equations Award full marks for $k = 6$ found WWW M1 any attempt to find the value of k and 'test' M1 Systematic attempt in (the equivalent of) their * Award full marks for $k = 6$ found WWW
		6	

June 2010

PMT

Q6		mark	notes
(i)	Vertically $y = 8t - 4.9t^2$	M1 A1	Use of $s = ut + 0.5at^2$ with $g = \pm 9.8, \pm 10$. Accept $u = 0$ or 14.4 or 14.4 sin θ or $u\sin\theta$ but not 12. Allow use of $+ 3.6$. Accept derivation of $- 4.9$ not clear. cao.
	Horizontally $x = 12t$	B1 3	
(ii)	either Require $y = -3.6$ so $-3.6 = 8t - 4.9t^2$ Use of formula or $4.9(t-2)(t+\frac{18}{49}) = 0$	M1 M1	Equating their <i>y</i> to ± 3.6 or equiv. Any form. A method for solving a 3 term quadratic to give at least 1 root. Allow their <i>y</i> and re-arrangement errors.
	Roots are 2 and $-\frac{18}{49}$ (= -0.367346)	A1	WWW. Accept no reference to 2^{nd} root [Award SC3 for $t = 2$ seen WWW]
	Horizontal distance is $12 \times 2 = 24$	M1	FT their <i>x</i> and <i>t</i> .
	so 24 m	F1	FT only their <i>t</i> (as long as it is +ve and is not obtained with sign error(s) e.g. –ve sign just dropped)
	or Require $y = -3.6$ so $-3.6 = 8t - 4.9t^2$ Eliminate t between $x = 12t$ and $-3.6 = 8t - 4.9t^2$	M1 M1	Equating their <i>y</i> to ± 3.6 or equiv. Any form. Expressions in any form. Elimination must be complete
	so $0 = 3.6 + \frac{12}{12} - \frac{144}{144}$	AI	Accept in any form. May be implied.
	Use of formula or factorise	M1	A method for solving a 3 term quadratic to give at least 1 root. Allow their <i>y</i> and re-arrangement errors.
	+ve root is 24 so 24m or Methods that divide the motion into sections	F1	FT from their quadratic after re-arrangement. Must be +ve.
	Projection to highest point (A) Highest point to level of jetty (B) Level of jetty to sea (C) Combination of A, B and C may be used	M1	Attempt to find times or distances for sections that give the total horizontal distance travelled
	(A) 0.8163 s; 9.7959 m: (B) 0.816s; 9.7959 m (C): 0.3673 s; 4.4081 m	A1 A1 A1 A1 5	Any time or distance for a section to find time of distance 2 nd time or distance correct (The two sections must not be A and B) cao
		8	

PMT

Q 7		mark	notes
(i)			
(A)	4 m	B1	
(B)	12 - (-4) = 16 m	M1	Looking for distance. Need evidence of taking account
		A1	of +ve and –ve displacements.
(C)	1 < <i>t</i> < 3.5	B1	The values 1 and 3.5
		BI	Strict inequality
(D)	t = 1, t = 3.5	B1	Do not award if extra values given.
		6	
(ii)	v = -8t + 8	M1	Differentiating
		A1	
	a = -8	F1 3	
(iii)	-8t + 8 = 4 so $t = 0.5$ so 0.5 s	B1	FT their <i>v</i> .
	-8t + 8 = -4 so $t = 1.5$ so 1.5 s	B1	FT their <i>v</i> .
		2	
(iv)	mothod 1		
(1V)	Need velocity at $t = 3$		
	$v(3) = -8 \times 3 + 8 = -16$	B1	FT their <i>v</i> from (ii)
	either		
	$y = \int 32 dt = 32t + C$	M1	Accept $32t + C$ or $32t$. SC1 if $\int_{1}^{4} 32dt$ attempted.
		. 1	
	v = -16 when $t = 3$ gives $v = 32t - 112$	AI	Use of their -16 from an attempt at v when $t=3$
	$y = \int (32t - 112) dt = 16t^2 - 112t + D$	M1	FT their <i>v</i> of the form $pt + q$ with $p \neq 0$ and $q \neq 0$.
			Accept if at least 1 term correct. Accept no D.
	y = 0 when $t = 3$		
	gives $y = 16t^2 - 112t + 192$	A1	cao.
	or $1 \leq (-2) + 22 \leq (-2)^2$	241	
	$y = -16 \times (t-3) + \frac{1}{2} \times 32 \times (t-3)^{-1}$	MI	Use of $s = ut + \frac{1}{2}at^{-1}$
		A1	Use of their -16 (not 0) from an attempt at v when $t=3$ and 32. Condone use of just t
		M1	Use of $t \pm 3$
		A1	cao
	(so $y = 16t^2 - 112t + 192$)		
	mathad 2		
	Since accn is constant, the displacement v is		
	a quadratic function. Since we have $y = 0$ at		
	t = 3 and $t = 4$		
	y = k(t-3)(t-4)	M1	Use of a quadratic function (condone no <i>k</i>)
		Al P1	Correct use of roots
	When $t = 3.5$, $y = -4$	DI	k present
	so $-4 = k \times \frac{1}{2} \times -\frac{1}{2}$	M1	Or consider velocity at $t = 3$
	so $k = 16$ (and $y = 16t^2 - 112t + 192$)	A1	cao. Accept k without v simplified.
		5	······································
		16	

PMT

June 2010

Q8		mark	notes
(i)	N2L i direction 150 = 250a a = 0.6 so 0.6 m s ⁻²	M1 A1 2	Use of N2L. Allow $F = mga$. Accept no reference to direction
(ii)	150 N – i direction	B1 B1 2	Allow correct description or arrow [Accept '– 150 in i direction' for B1 B1]
(iii)	For force only in direction perp to i $300\sin 40 = 450\sin \theta$	M1	Resolution of both terms attempted. Allow $\sin \leftrightarrow \cos$ if in both terms. Allow 250 or 250 <i>g</i> present.
	$\theta = 25.37300$ so 25.4° (3 s. f.)	A1	Accept \pm . Accept answer rounding to 25.5. Allow SC1 if seen in this part.
	In 1 direction $300\cos 40 + 150 + 450\cos \theta$	M1	Proper resolution attempted of 450 and 300. Allow $\sin \leftrightarrow \cos$ if in both terms Accept use of their θ or just θ .
	786.4017 so 786 i N (3 s. f.)	A1 A1	Either resolution correct. Accept their θ or just θ . Accept sin/cos consistent with use for cpt perpendicular to i . Accept no reference to direction cao. Allow SC1 WW
		6	
(iv)	Using $s = ut + 0.5at^{2}$ $1 = 0.5a \times 2^{2}$ a = 0.5 Using N2L in i direction 786.4017 $-F = 250 \times 0.5$ 661.4017 so 661 N (3 s. f.)	M1 A1 M1 A1 E1 5	Appropriate (sequence of) <i>suvat</i> [WW M0 A0] Use of $F = ma$ with their 786.4 and their <i>a</i> . No extra forces. Allow sign errors. All correct using their 786.4 and <i>a</i> Use of N2L clearly shown. (Accept 0.5 used WW)
(v)	Using N2L in i direction either $125 - 200 = 250a_1$ or (starting again) $786.4017 (200 + 661.4017) = 250 a_1$	M1	Use of $F = ma$ with their values. Allow 1 force missing
	so $a_1 = -0.3$ Using $v^2 = u^2 + 2 a_1 s$ $v^2 = 1.8^2 + 2 \times (-0.3) \times 1.65$ v = 1.5 so 1.5 m s ⁻¹	F1 M1 F1 A1 5	FT only their 786 and their 661 Appropriate (sequence of) <i>suvat</i> with $u \neq 0$. Must be 'new' <i>a</i> obtained by using N2L. Only FT use of \pm their a_1 cao
		20	