4

Sub

2

3

3 8

4761 Mark Scheme June 2006

Q 1 mark Sub

$$0 = u - 9.8 \times 3$$

 $u = 29.4 \text{ so } 29.4 \text{ m s}^{-1}$

$$s = 0.5 \times 9.8 \times 9 = 44.1$$
 so 44.1 m

M1 *uvast* leading to u with t = 3 or t = 6

A1 Signs consistent

M1 *uvast* leading to *s* with t = 3 or t = 6 or **their** u

F1 FT **their** u if used with t = 3. Signs consistent. Award for 44.1, 132.3 or 176.4 seen.

[Award maximum of 3 if one answer wrong]

Q 2

(i)
$$\sqrt{(-6)^2 + 13^2} = 14.31782...$$

so 14.3 N (3 s. f.)

M1 Accept $\sqrt{-6^2 + 13^2}$

A1

mark

(ii) Resultant is $\begin{pmatrix} -6\\13 \end{pmatrix} - \begin{pmatrix} -3\\5 \end{pmatrix} = \begin{pmatrix} -3\\8 \end{pmatrix}$

Require $270 + \arctan \frac{8}{3}$

so 339.4439...° so 339°

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.

M1 Use of $\arctan\left(\pm\frac{8}{3}\right)$ or $\arctan\left(\pm\frac{3}{8}\right)$ ($\pm20.6^{\circ}$ or $\pm69.4^{\circ}$) or equivalent on **their** resultant

A1 cao. Do not accept -21°.

(iii) $\begin{pmatrix} -3 \\ 5 \end{pmatrix} = 5\mathbf{a}$ so $(-0.6\,\mathbf{i} + \mathbf{j}) \text{ m s}^{-2}$

change in velocity is $(-6\mathbf{i} + 10\mathbf{j})$ m s⁻¹

M1 Use of N2L with accn *used* in vector form

A1 Any form. Units not required. isw.

F1 10a seen. Units not required. Must be a vector.

[SC1 for $a = \sqrt{3^2 + 5^2} / 5 = 1.17$]

4761 Mark Scheme June 2006

Q 3		mark		Sub
(i)	$F = 14000 \times 0.25$	M1	Use of N2L . Allow $F = mga$ and wrong mass. No	
	so 3500 N	A1	extra forces.	2
(ii)	4000 - R = 3500 so 500 N	B1	FT <i>F</i> from (i). Condone negative answer.	1
(iii)	$1150 - R_{\rm T} = 4000 \times 0.25$	M1	N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use	
	so 150 N	A1	of $F = mga$. Allow sign errors. cao	2
(iv)	either Component of weight down slope is	M1	Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.	
	Extra driving force is cpt of mg down slope	M1	May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow sin ↔ cos	
	14000g sin 3°			
	= 14000×9.8×0.0523359 = 7180.49 so 7180 N (3 s. f.) or	A1		
		M1	Attempt to find cpt of weight (allow wrong mass). Accept $sin \leftrightarrow cos$. Accept use of $m sin \theta$.	
	$D - 500 - 14000g \sin 3 = 14000 \times 0.25$	M1	N2L with all terms present with correct signs and mass. No extras. FT 500 N. Accept their 500 + 150 for resistance. Must have resolved weight component. Allow sin ↔ cos.	
	D = 11180.49 so extra is 7180 N (3 s. f.)	A1	Must be the extra force.	2
				3 8

Q4 mark Sub (i) either Need **j** cpt 0 so $18t^2 - 1 = 0$ M1Need not solve $\Rightarrow t^2 = \frac{1}{18}$. Only one root as t > 0E1 Must establish only one of the two roots is valid Establish sign change in j cpt **B**1 Establish only one root **B**1 2 M1(ii) v = 3 i + 36t jDifferentiate. Allow i or j omitted **A**1 Need i cpt 0 and this never happens E1 Clear explanation. Accept 'i cpt always there' or equiv 3 (iii) x = 3t and $y = 18t^2 - 1$ B1 Award for these two expressions seen. Eliminate t to give $y = 18\left(\frac{x}{3}\right)^2 - 1$ t properly eliminated. Accept any form and brackets M1missing so $y = 2x^2 - 1$ **A**1 cao 3 8 Q 5 mark Sub (i) $0^2 = V^2 - 2 \times 9.8 \times 22.5$ M1Use of appropriate uvast. Give for correct expression $V = 21 \text{ so } 21 \text{ m s}^{-1}$ Clearly shown. Do not allow $v^2 = 0 + 2gs$ without E1 explanation. Accept using V = 21 to show s = 22.5.

A1

(ii) $28\sin\theta = 21$ so $\theta = 48.59037...$

- M1Attempt to find angle of projection. Allow $sin \leftrightarrow cos$.
- (iii) Time to highest point is $\frac{21}{9.8} = \frac{15}{7}$

79.3725... so 79.4 m (3 s. f.)

- Or equivalent (time of whole flight) B1
- Distance is $2 \times \frac{15}{7} \times 28 \times \cos(\mathbf{their}\,\theta)$..
- M1Valid method for horizontal distance. Accept ½ time.

Do not accept 28 used for horizontal speed or vertical speed when calculating time.

- **B**1 Horizontal speed correct
- cao. Accept answers rounding to 79 or 80. A1 [If angle with vertical found in (ii) allow up to full marks in (iii). If $sin \leftrightarrow cos$ allow up to B1 B1 M0 A1] [If $u^2 \sin 2\theta / g$ used then M1* Correct formula used. FT their angle.

M1 Dep on *. Correct subst. FT their angle. A2 cao]

2

2

Q 6		mark		Sub
(i)	$0.5 \times 2 \times 12 + 0.5 \times 4 \times 12$ so 36 m	M1 A1	Attempt at sum of areas or equivalent. No extra areas.	2
(ii)	$8 - \frac{36}{12} = 5 \text{ seconds}$	B1	cao	1
(iii)	-6 m s^{-2}	M1 B1	Attempt at accn for $0 \le t \le 2$ must be - ve or equivalent	2
(iv)	$58.5 = 12 \times 6 + 0.5 \times a \times 36$ so $a = -0.75$	M1 A1	Use of <i>uvast</i> with 12 and 58.5	2
(v)	$a = -10 + \frac{9}{2}t - \frac{3}{8}t^2$	M1 A1	Differentiation	
	$a(1) = -10 + \frac{9}{2} - \frac{3}{8} = -5.875$	A1	cao	3
(vi)	$s = \int \left(12 - 10t + \frac{9}{4}t^2 - \frac{1}{8}t^3 \right) dt$	M1 A1	Attempt to integrate At least one term correct	
	$=12t-5t^2+\frac{3}{4}t^3-\frac{1}{32}t^4+C$	A1	All correct. Accept + C omitted	
	s = 0 when t = 0 so C = 0	A1*	Clearly shown	
	s(8) = 32 either	A1	cao (award even if A1* is not given)	5
(vii)	s(2) = 9.5 and $s(4) = 8$	B1	Both calculated correctly from their <i>s</i> . No further marks if their $s(2) \le s(4)$	
	Displacement is negative Car going backwards	E1 E1	Do <i>not</i> need car going backwards <i>throughout</i> the	
	or		interval.	
	Evaluate $v(t)$ where $2 < t < 4$ or appeal to shape of the graph	B1	e.g. $v(3) = -1.125$	
	Velocity is negative	E1	No further marks if their $v \ge 0$	
	Car going backwards	E1	Do <i>not</i> need car going backwards <i>throughout</i> the interval [Award WW2 for 'car going backwards'; WW1 for velocity or displacement negative]	2
				3 18

18

4761 Mark Scheme June 2006

Q 7 mark Sub (i) $T_{AB} \sin \alpha = 147$ M1 Attempt at resolving. Accept $sin \leftrightarrow cos$. Must have T resolved and equated to 147. so $T_{AB} = \frac{147}{0.6}$ B1 Use of 0.6. Accept correct subst for angle in wrong expression. = 245 so 245 N**A**1 Only accept answers agreeing to 3 s. f. [Lami: M1 pair of ratios attempted; B1 correct sub;A1] (ii) $T_{\rm BC} = 245\cos\alpha$ M1Attempt to resolve 245 and equate to T, or equiv Accept $sin \leftrightarrow cos$ $= 245 \times 0.8 = 196$ E1 Substitution of 0.8 clearly shown [SC1 $245 \times 0.8 = 196$] 2 [Lami: M1 pair of ratios attempted; E1] (iii) Geometry of A, B and C and weight of B the E1 Mention of two of: same weight: same direction AB: same direction BC same and these determine the tension E1 Specific mention of same geometry & weight or recognition of same force diagram 2 (iv) No extra forces. **B**1 Correct orientation and arrows **B**1 'T' 196 and 90 labelled. Accept 'tension' written out. either Allow for only β or T attempted Realise that 196 N and 90 N are horiz and vert M1 forces where resultant has magnitude and line of action of the tension $\tan \beta = 90/196$ B1 Use of arctan (196/90) or arctan (90/196) or equiv β = 24.6638... so 24.7 (3 s. f.) **A**1 $T = \sqrt{196^2 + 90^2}$ M1Use of Pythagoras T = 215.675... so 216 N (3 s. f.) E1 or $\uparrow T \sin \beta - 90 = 0$ **B**1 Allow if T = 216 assumed $\rightarrow T \cos \beta - 196 = 0$ B1 Allow if T = 216 assumed Solving $\tan \beta = \frac{90}{196} = 0.45918...$ M1Eliminating T, or... β = 24.6638... so 24.7 (3 s. f.) [If T = 216 assumed, B1 for β ; B1 for check in 2^{nd} **A**1 T = 215.675... so 216 N (3 s. f.) 7 E1 equation; E0] Tension on block is 215.675.. N (pulley is May be implied. Reasons not required. (v) B1 smooth and string is light) $M \times 9.8 \times \sin 40 = 215.675... + 20$ M1 Equating their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present. **A**1 Correct M = 37.4128... so 37.4 (3 s. f.) **A**1 Accept answers rounding to 37 and 38 4