4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	6 m s ⁻¹ 4 m s ⁻²	B1 B1	Neglect units. Neglect units.	2
(ii)	$v(5) = 6 + 4 \times 5 = 26$ $s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary.	3
(iii)	distance is $80 + 26 \times (15 - 5) + 0.5 \times 3 \times (15 - 5)^2$ = 490 m	M1 M1 A1	Their 80 + attempt at distance with $a = 3$ Appropriate <i>uvast</i> . Allow $t = 15$. FT their v(5). cao	3
		8		

Q 2		Mark	Comment	Sub
(i)		M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent <i>uvast</i> .	
	When $t = 2$, velocity is $6 + 4 \times 2 = 14$	A1		2
(ii)	Require velocity of -6 so must inc by -20 $-8 \times (t-2) = -20$ so $t = 4.5$	M1 F1	FT ±(6 + their 14) used in any attempt at area/ uvast FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW]	2
		4		

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F} + \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	M1	N2L. $F = ma$. All forces present	
		B1 B1	Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.	
	$\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$	A1	SC4 for $\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly	
			intended.	4
(ii)	$\arctan\left(\frac{16}{10}\right)$	M1	Accept equivalent and FT their F only. Do not accept wrong angle. Accept 360 - $\arctan\left(\frac{16}{10}\right)$	
	57.994 so 58.0° (3 s. f.)	A1	cao. Accept 302° (3 s.f.)	2
		6		

Q4		Mark	Comment	Sub
	either			
	We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or their attempt at y to ± 3.675 . If they attempt y, allow sign errors, $g = 9.81$ etc. and $u = 35$.	
	Solving $4t^2 - 8t + 3 = 0$	M1*	Dependent. Any method of solution of a 3 term quadratic.	
	gives $t = 0.5$ or $t = 1.5$	A1 F1	cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on 1 st M1. [Award M1 M1 A1 for 1.5 seen WW]	
	or	M1	Complete method for total time from motion in separate parts. Allow sign errors, $g = 9.81$ etc. Allow $u = 35$ initially only.	
	Time to greatest height			
	$0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
	Time to drop is 0.5	A1	Time for 2 nd part	
	total is 1.5 s	A1	cao	
	then			
	Horiz distance is $35 \times 0.96t$	B1	Use of $x = u \cos \alpha t$. May be implied.	
	So distance is $35 \times 0.96 \times 1.5 = 50.4 \text{ m}$	F1	FT their quoted <i>t</i> provided it is positive.	
				6
		6		

Q5		Mark	Comment	Sub
(i)	For the parcel	M1	Applying N2L to the parcel. Correct mass. Allow $F = mga$. Condone missing force but do not allow spurious forces. Allow only sign error(s).	
	\uparrow N2L 55 – 5g = 5a a = 1.2 so 1.2 m s ⁻²	A1	Allow –1.2 only if sign convention is clear.	3
(ii)	$R - 80g = 80 \times 1.2$ or $R - 75g - 55 = 75 \times 1.2$	M1	N2L. Must have correct mass. Allow only sign errors. FT their <i>a</i>	
	R = 880 so 880 N	A1 5	[NB beware spurious methods giving 880 N]	2

4761 Mark Scheme January 2009

Q6		Mark	Comment	Sub
	Method 1			
	$\uparrow v_{A} = 29.4 - 9.8T \qquad \downarrow v_{B} = 9.8T$	M1	Either attempted. Allow sign errors and $g = 9.81$	
			etc	
		A1	Both correct	
	For same speed $29.4 - 9.8T = 9.8T$	M1	Attempt to equate. Accept sign errors and $T = 1.5$	
			substituted in both.	
	so $T = 1.5$	E1	If 2 subs there must be a statement about equality	
	and $V = 14.7$	F1	FT T or V, whichever is found second	
	$H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^{2}$	M1	Sum of the distance travelled by each attempted	
	$+0.5\times9.8\times1.5^{2}$			
	= 44.1	A1	cao	
	Made 12			
	Method 2	M1		
	$V^{2} = 29.4^{2} - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$	IVII	Attempts at V^2 for each particle equated. Allow	
			sign errors, 9.81 etc	
			Allow h_1 , h_2 without $h_1 = H - h_2$	
		B1	Both correct. Require $h_1 = H - h_2$ but not an	
			equation.	
	$29.4^2 = 19.6H$ so $H = 44.1$	A1	cao	
	Relative velocity is 29.4 so	M1	Any method that leads to T or V	
	$T = \frac{44.1}{44.1}$	E1		
	$I = \frac{1}{29.4}$			
	Using $v = u + at$	M1	Any method leading to the other variable	
	$V = 0 + 9.8 \times 1.5 = 14.7$	F1		
			Other approaches possible. If 'clever' ways seen,	
			reward according to weighting above.	
				7
		7		

(i) Diagram B1 B	Q7		Mark	Comment	Sub
F = 100.313 so 100 N (3 s. f.) E1 Some evidence required for the show, e.g. at least 4 figures. Accept \pm . Resolve \uparrow R + 121 sin 34 - 980 = 0 M1 B1 A1 Resolve vert. Accept $s \leftrightarrow c$ and sign errors. All correct Accept no reference to direction accept no reference to direction [Do not isw: conflicting statements get zero] 2	(i)	Diagram		All forces present with suitable labels. Accept <i>W</i> ,	
R = 912.337 so 912 N (3 s. f.) B1 All correct R = 912.337 so 912 N (3 s. f.) A1				Some evidence required for the <i>show</i> , e.g. at least	
It will continue to move at a constant speed of 0.5 m s^{-1} . E1 Accept no reference to direction [Do not isw: conflicting statements get zero] 2 (iii) Using N2L horizontally $155\cos 34 - 95 = 100a$ M1 Use of N2L. Allow $F = mga$, F omitted and 155 not resolved. A1 Use of $F = ma$ with resistance and $F = ma$ with resis			B1	_	7
Using N2L horizontally $155\cos 34 - 95 = 100a$ M1 Use of N2L. Allow $F = mga$, F omitted and 155 not resolved. A1 Use of $F = ma$ with resistance and T resolved. Allow $s \leftrightarrow c$ and signs as the only errors. [iv) $a = 5 \div 2 = 2.5$ N2L down the slope $100g \sin 26 - F = 100 \times 2.5$ M1 $F = ma$ using their "new" a . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors. B1 Weight term resolved correctly, seen in an equn or on a diagram. $F = 179.603$ so 180 N (3 s. f.) A1 Cao. Accept -180 N if consistent with direction of F on their diagram	(ii)			Accept no reference to direction	
(iv) $a = 5 \div 2 = 2.5$ M1 Attempt to find a from information N2L down the slope $100g \sin 26 - F = 100 \times 2.5$ M1 $F = ma$ using their "new" a . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors. B1 Weight term resolved correctly, seen in an equn or on a diagram. $F = 179.603$ so 180 N (3 s. f.) A1 cao. Accept -180 N if consistent with direction of F on their diagram	(iii)		M1		
(iv) $a = 5 \div 2 = 2.5$ M1 Attempt to find a from information N2L down the slope $100g \sin 26 - F = 100 \times 2.5$ M1 $F = ma$ using their "new" a . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors. B1 Weight term resolved correctly, seen in an equn or on a diagram. $F = 179.603$ so 180 N (3 s. f.) A1 cao. Accept -180 N if consistent with direction of F on their diagram		a = 0.335008 so 0.335 m s ⁻² (3 s. f.)			3
$100g \sin 26 - F = 100 \times 2.5$ M1 $F = ma \text{ using their "new" } a.$ All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors. B1 Weight term resolved correctly, seen in an equn or on a diagram. $F = 179.603 \text{ so } 180 \text{ N (3 s. f.)}$ A1 cao. Accept $-180 \text{ N if consistent with direction}$ of F on their diagram	(iv)			Attempt to find a from information	
or on a diagram. $F = 179.603$ so 180 N (3 s. f.) A1 cao. Accept -180 N if consistent with direction of F on their diagram			M1	No extras. Require attempt at wt cpt. Allow	
of F on their diagram			B1	l	
		F = 179.603 so 180 N (3 s. f.)	A1		
17			17		5

Q8		Mark	Comment	Sub
(i)	$v_x = 8 - 4t$ $v_x = 0 \Leftrightarrow t = 2 \text{ so at } t = 2$	M1 A1 F1	either Differentiating or Finding 'u' and 'a' from x and use of $v = u + at$ FT their $V_x = 0$	3
(ii)	$y = \int (3t^2 - 8t + 4) dt$ $= t^3 - 4t^2 + 4t + c$ $y = 3 \text{ when } t = 1 \text{ so } 3 = 1 - 4 + 4 + c$ $\text{so } c = 3 - 1 = 2 \text{ and } y = t^3 - 4t^2 + 4t + 2$	M1 A1 M1 E1	Integrating v_y with at least one correct integrated term. All correct. Accept no arbitrary constant. Clear evidence Clearly shown and stated	4
(iii)	We need $x = 0$ so $8t - 2t^2 = 0$ so $t = 0$ or $t = 4$ t = 0 gives $y = 2$ so 2 m $t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18 m	M1 A1 A1 A1	May be implied. Must have both Condone 2j Condone 18j	4
(iv)	We need $v_x = v_y = 0$	M1	either Recognises $v_x = 0$ when $t = 2$ or Finds time(s) when $v_y = 0$ or States or implies $v_x = v_y = 0$	
	From above, $v_x = 0$ only when $t = 2$ so evaluate $v_y(2)$ $v_y(2) = 0 [(t - 2) \text{ is a factor}] \text{ so yes only at } t = 2$	M1	Considers $v_x = 0$ and $v_y = 0$ with their time(s) $t = 2 \text{ recognised as only value (accept as evidence only } t = 2 \text{ used below)}.$	
	At $t = 2$, the position is $(8, 2)$ Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	B1 B1	For the last 2 marks, no credit lost for reference to $t = \frac{2}{3}$. May be implied FT from their position. Accept one position followed through correctly.	5
(v)	t = 0, 1 give $(0, 2)$ and $(6, 3)$	B1	At least one value $0 \le t < 2$ correctly calc. This need not be plotted	5
		B1	Must be <i>x-y</i> curve. Accept sketch. Ignore curve outside interval for <i>t</i> . Accept unlabelled axes. Condone use of line segments.	
		B1	At least three correct points used in <i>x-y</i> graph or sketch. General shape correct. Do not condone use of line segments.	
		19		3
		1/		1