(2)

OIOS NAC IM

- 1. A particle A of mass 2 kg is moving along a straight horizontal line with speed 12 m s⁻¹. Another particle B of mass m kg is moving along the same straight line, in the opposite direction to A, with speed 8 m s⁻¹. The particles collide. The direction of motion of A is unchanged by the collision. Immediately after the collision, A is moving with speed 3 m s⁻¹ and B is moving with speed 4 m s⁻¹. Find
 - (a) the magnitude of the impulse exerted by B on A in the collision,
- (b) the value of m.

 (4)

 (2)

 (3)

 (4)

 (2)

 (M)
- (b) $2 \times 12 + M \times -8 = 2 \times 3 + 4 \times M$ 84 - 8m = 6 + 4m18 = 12m $M = 1 \cdot 5kg$
- (a) Mom A before = 2x12 = 24Ns => Impulse = 18Ns Mom A after = 2x3 = 6Ns => Impulse = 18Ns

(3)

- 2. An athlete runs along a straight road. She starts from rest and moves with constant acceleration for 5 seconds, reaching a speed of 8 m s⁻¹. This speed is then maintained for T seconds. She then decelerates at a constant rate until she stops. She has run a total of 500 m in 75 s.
 - (a) In the space below, sketch a speed-time graph to illustrate the motion of the athlete.
 - (b) Calculate the value of T.

3.

A particle of mass m kg is attached at C to two light inextensible strings AC and BC. The other ends of the strings are attached to fixed points A and B on a horizontal ceiling. The particle hangs in equilibrium with AC and BC inclined to the horizontal at 30° and 60° respectively, as shown in Figure 1.

Given that the tension in AC is 20 N, find

(a) the tension in BC,

(4)

(b) the value of m.

(4)

Rf=0 => T(0560 = 20(0530) T=34.6N

Figure 2

PMT

A pole AB has length 3 m and weight W newtons. The pole is held in a horizontal position in equilibrium by two vertical ropes attached to the pole at the points A and C where AC = 1.8 m, as shown in Figure 2. A load of weight 20 N is attached to the rod at B. The pole is modelled as a uniform rod, the ropes as light inextensible strings and the load as a particle.

- (a) Show that the tension in the rope attached to the pole at C is $\left(\frac{5}{6}W + \frac{100}{3}\right)N$.
- (b) Find, in terms of W, the tension in the rope attached to the pole at A. (3)

Given that the tension in the rope attached to the pole at C is eight times the tension in the rope attached to the pole at A,

(c) find the value of W.

$$T_{c} = \frac{1.5W + 60}{1.8} = \frac{5W + 100}{6W + \frac{3}{3}}$$

(3)

(7)

Figure 4

Two particles A and B have masses 5m and km respectively, where k < 5. The particles are connected by a light inextensible string which passes over a smooth light fixed pulley. The system is held at rest with the string taut, the hanging parts of the string vertical and with A and B at the same height above a horizontal plane, as shown in Figure 4. The system is released from rest. After release, A descends with acceleration $\frac{1}{4}g$.

- (a) Show that the tension in the string as A descends is $\frac{15}{4}mg$.
- (b) Find the value of k.
- (c) State how you have used the information that the pulley is smooth.

 (1)

After descending for $1.2 \,\mathrm{s}$, the particle A reaches the plane. It is immediately brought to rest by the impact with the plane. The initial distance between B and the pulley is such that, in the subsequent motion, B does not reach the pulley.

(d) Find the greatest height reached by B above the plane.

PMT

A)
$$u=0$$
 $t=1.2$ $0=2.45$
 $v_1 = u+at = v_1 = 2.94$
 $s = ut + zat^2 = s = 1.764m$

Initial
$$\frac{1}{1.764}$$
 B/2.94 U/= 2.94 C/= -9.8 V/=0
 $0^2 = U^2 + 2aS$
 $0^2 = 8.6436 - 19.6S$
 $S = 0.441 \text{ m}$
 $S = 0.441 \text{ m}$
 $S = 0.441 + 2x + 764$
 $S = 0.441 + 2x + 764$

7. [In this question, i and j are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin.]

A ship S is moving along a straight line with constant velocity. At time t hours the position vector of S is \mathbf{s} km. When t = 0, $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j}$. When t = 4, $\mathbf{s} = 21\mathbf{i} + 10\mathbf{j}$. Find

(a) the speed of S,

(4)

(b) the direction in which S is moving, giving your answer as a bearing.

(2)

(c) Show that $\mathbf{s} = (3t+9)\mathbf{i} + (4t-6)\mathbf{j}$.

(2)

A lighthouse L is located at the point with position vector $(18\mathbf{i} + 6\mathbf{j})$ km. When t = T, the ship S is 10 km from L.

(d) Find the possible values of T.

(6)

(a) Vel = (21i+10j)-(9i-6j) = 12i+16j = 3i+4j unh⁻¹

Speed = 5 hm/h

(b) 10 4 4

 $\theta = 90 - \tan^{-1}(\frac{4}{3}) = 36.9^{\circ}$

036.9° (037°)

(c) S= (91-6j)+t(3i+4j) = (9+3t)i+(-6+4t)

(d) SL = (18-(9+3T))i+(6-(-6+4T))j

SL = (9-3T)i+(12-4T)j

SL2 = (9-3T)2+(12-4T)2 SL2 = 102 = 100

9T2-S4T+81+16T2-96T+144 =100

2ST2-1SOT+12S=0

(=2S)

$$T^{2}-6T+S=0$$

 $(T-S)(T-1)=0$
 $T=Shrs$ $T=1hr$