General Certificate of Education January 2007 Advanced Subsidiary Examination

# MATHEMATICS Unit Mechanics 1B

MM1B



Friday 12 January 2007 9.00 am to 10.30 am

#### For this paper you must have:

• an 8-page answer book

• the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

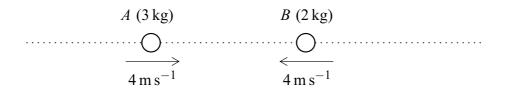
Time allowed: 1 hour 30 minutes

### Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MM1B.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take  $g = 9.8 \text{ m s}^{-2}$ , unless stated otherwise.

#### Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.
- Unit Mechanics 1B has a written paper only.


## Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

2

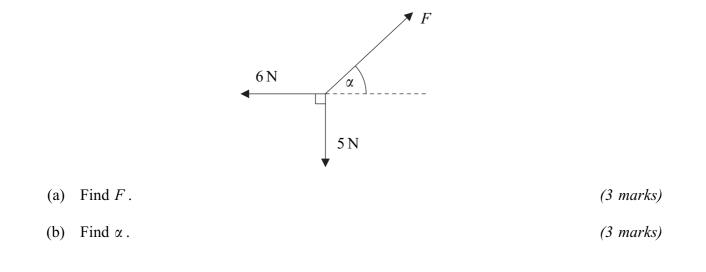
#### Answer all questions.

1 Two particles A and B have masses of 3 kg and 2 kg respectively. They are moving along a straight horizontal line towards each other. Each particle is moving with a speed of  $4 \text{ m s}^{-1}$  when they collide.

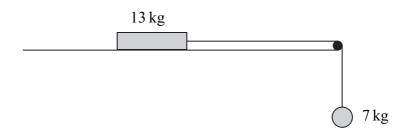


- (a) If the particles coalesce during the collision to form a single particle, find the speed of the combined particle after the collision. (3 marks)
- (b) If, after the collision, A moves in the same direction as before the collision with speed  $0.4 \text{ m s}^{-1}$ , find the speed of B after the collision. (3 marks)
- 2 A lift rises vertically from rest with a constant acceleration.

After 4 seconds, it is moving upwards with a velocity of  $2 \text{ m s}^{-1}$ .


It then moves with a constant velocity for 5 seconds.

The lift then slows down uniformly, coming to rest after it has been moving for a total of 12 seconds.

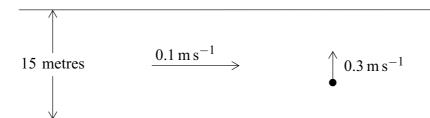

| (a) Sketch a velocity-time graph for the motion of the $m$ . (4 $mark$ | (a) | Sketch a velocity-time graph for the motion of the lift. | (4 marks) |
|------------------------------------------------------------------------|-----|----------------------------------------------------------|-----------|
|------------------------------------------------------------------------|-----|----------------------------------------------------------|-----------|

- (b) Calculate the total distance travelled by the lift. (2 marks)
- (c) The lift is raised by a single vertical cable. The mass of the lift is 300 kg. Find the maximum tension in the cable during this motion. (4 marks)

3 The diagram shows three forces which act in the same plane and are in equilibrium.



4 The diagram shows a block, of mass 13 kg, on a rough horizontal surface. It is attached by a string that passes over a smooth peg to a sphere of mass 7 kg, as shown in the diagram.




The system is released from rest, and after 4 seconds the block and the sphere both have speed  $6 \,\mathrm{m \, s^{-1}}$ , and the block has **not** reached the peg.

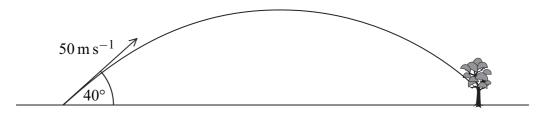
| (a) | State <b>two</b> assumptions that you should make about the string in order to mode motion of the sphere and the block. | el the<br>(2 marks) |
|-----|-------------------------------------------------------------------------------------------------------------------------|---------------------|
| (b) | Show that the acceleration of the sphere is $1.5 \mathrm{ms^{-2}}$ .                                                    | (2 marks)           |
| (c) | Find the tension in the string.                                                                                         | (3 marks)           |

(d) Find the coefficient of friction between the block and the surface. (6 marks)

- 4
- 5 A girl in a boat is rowing across a river, in which the water is flowing at  $0.1 \text{ m s}^{-1}$ . The velocity of the boat relative to the water is  $0.3 \text{ m s}^{-1}$  and is perpendicular to the bank, as shown in the diagram.



- (a) Find the magnitude of the resultant velocity of the boat. (2 marks)
- (b) Find the acute angle between the resultant velocity and the bank. (3 marks)
- (c) The width of the river is 15 metres.
  - (i) Find the time that it takes the boat to cross the river. (2 marks)
  - (ii) Find the total distance travelled by the boat as it crosses the river. (2 marks)
- 6 A trolley, of mass 100 kg, rolls at a constant speed along a straight line down a slope inclined at an angle of  $4^{\circ}$  to the horizontal.


Assume that a constant resistance force, of magnitude P newtons, acts on the trolley as it moves. Model the trolley as a particle.

- (a) Draw a diagram to show the forces acting on the trolley. (1 mark)
- (b) Show that P = 68.4 N, correct to three significant figures. (3 marks)
- (c) (i) Find the acceleration of the trolley if it rolls down a slope inclined at  $5^{\circ}$  to the horizontal and experiences the same constant force of magnitude *P* that you found in part (b). (4 marks)
  - (ii) Make one criticism of the assumption that the resistance force on the trolley is constant. (1 mark)

7 A golf ball is struck from a point on horizontal ground so that it has an initial velocity of  $50 \,\mathrm{m\,s^{-1}}$  at an angle of 40° above the horizontal.

Assume that the golf ball is a particle and its weight is the only force that acts on it once it is moving.

- (a) Find the maximum height of the golf ball. (4 marks)
- (b) After it has reached its maximum height, the golf ball descends but hits a tree at a point which is at a height of 6 metres above ground level.



Find the time that it takes for the ball to travel from the point where it was struck to the tree. (6 marks)

8 A particle is initially at the origin, where it has velocity  $(5i - 2j) m s^{-1}$ . It moves with a constant acceleration  $a m s^{-2}$  for 10 seconds to the point with position vector 75i metres.

(a) Show that a = 0.5i + 0.4j. (3 marks)

- (b) Find the position vector of the particle 8 seconds after it has left the origin. (3 marks)
- (c) Find the position vector of the particle when it is travelling parallel to the unit vector **i**. *(6 marks)*

#### END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page