

# **OCR Further Maths AS-level**

## **Statistics**

Formula Sheet

Provided in formula book

Not provided in formula book

▶ Image: Second Second

This work by PMT Education is licensed under CC BY-NC-ND 4.0



www.pmt.education





## Probability

#### Permutations and Combinations

| Number of permutations of $n$ distinct objects                                          | $n! = n \times (n-1) \times (n-2) \dots \times 2 \times 1$ |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------|
| Number of combinations<br>when choosing <i>r</i> objects<br>from <i>n</i> objects       | $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$         |
| Number of permutations of a subset of size $r$ from a set of $n$ distinct objects       | ${}^{n}P_{r} = {}^{n}C_{r} \times r! = \frac{n!}{(n-r)!}$  |
| Number of permutations from $n$ objects with $r_A$ of type $A$ , $r_B$ of type $B$ etc. | $\frac{n!}{r_A! r_B! \dots}$                               |

### **Probability Problems**

| n(A)                                                                                  | The number of ways of making a choice about $A$                                                                |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Product principle                                                                     | $n(A \text{ and } B) = n(A) \times n(B)$                                                                       |
| Addition principle<br>(given that A and B are<br>mutually exclusive)                  | n(A  or  B) = n(A) + n(B)                                                                                      |
| Counting principles in<br>probability (given that all<br>outcomes are equally likely) | $P(A) = \frac{\text{number of outcomes in which } A \text{ occurs}}{\text{total number of possible outcomes}}$ |

0

▶ Image: Second Second



## **Discrete Random Variables**

#### Average and Spread of Discrete Random Variables

| For the random variab | le taking the values $x_i$ with $P(X=x_i)=p_i$                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Expectation           | $\mu = E(X) = \sum x_i p_i$                                                                                                           |
| Variance              | $\sigma^{2} = Var(X) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} p_{i}$ $= \sum_{i=1}^{n} x_{i}^{2} p_{i} - \mu^{2}$ $= E(X^{2}) - (E(X))^{2}$ |

#### Linear Coding with the Mean and Variance

For Y = aX + b: E(Y) = aE(X) + b $Var(Y) = a^2Var(X)$ 

#### **Binomial Distribution**

For 
$$X \sim B(n, p)$$
  
 $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$   
 $E(X) = np$   
 $Var(X) = np(1-p)$ 

#### **Discrete Uniform Distribution**

For 
$$X \sim U(n)$$
  
 $P(X = x) = \frac{1}{n}$  for  $x = 1, 2, ... n$   
 $E(X) = \frac{n+1}{2}$   
 $Var(X) = \frac{n^2 - 1}{12}$ 

O

▶ Image: Second Second

🕟 www.pmt.education



#### **Geometric Distribution**

For  $X \sim Geo(p)$   $P(X = x) = p(1-p)^{x-1}$ for  $x = 1, 2, 3 \dots$   $P(X > x) = (1-p)^x$   $E(X) = \frac{1}{p}$  $Var(X) = \frac{1-p}{p^2}$ 

#### **Poisson Distribution**

| For $X \sim Po(\lambda)$                                        |  |
|-----------------------------------------------------------------|--|
| $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$ for $x = 0, 1, 2$ |  |
| $E(X) = \lambda$                                                |  |
| $Var(X) = \lambda$                                              |  |

www.pmt.education

0

▶ Image: Second Second





## **Chi-squared Tests**

**Contingency Tables** 

| Expected value in cell <i>i</i>                        | $E_i = \frac{\text{row total } \times \text{column total}}{\text{overall total}}$ |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|
| Chi-squared value                                      | $\chi_{\rm calc}^2 = \frac{\sum (O_i - E_i)^2}{E_i}$                              |
| Degrees of freedom in an $n \times m$ contigency table | v = (n-1)(m-1)                                                                    |

#### **Hypothesis Testing**

If variables are independent and  $E_i > 5$  for all i $\chi^2_{\text{calc}} = \frac{\sum (O_i - E_i)^2}{E_i} \approx \chi^2_v$ 

#### **Yates' Correction**

When 
$$v = 1$$
  
 $\chi^2_{\text{Yates}} = \frac{\sum |(O_i - E_i| - 0.5)^2}{E_i}$ 

#### **Goodness of Fit Test**

v = number of bins – number of constraints

▶ Image: Second Second





## Correlation

#### **Pearson's Product Moment Correlation Coefficient**

| For a set of bivariate date<br>with variables <i>X</i> and <i>Y</i>                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $r = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{n}$                                                                                             |
| $= \frac{\sqrt{\left(\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right)\left(\sum y_i^2 - \frac{(\sum y_i)^2}{n}\right)}}{\frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}}$ |
| $S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$                                                                                |
| $S_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$                                                                                |
| $S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - \frac{\sum x_i \sum y_i}{n}$                                                            |

#### Spearman's Rank Correlation Coefficient

$$r_{\rm s} = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

where d = difference in ranks and n = number of data pairs

## **Linear Regression**

#### Least Squares Regression Line

$$y = ax + b$$
$$a = \overline{y} - b\overline{x}$$
$$b = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

▶ Image: Second Second

🕟 www.pmt.education

