

OCR Further Maths A Level

Statistics

Formula Sheet

Provided in formula book

Not provided in formula book

▶ Image: Second Second

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

www.pmt.education

Probability

Permutations and Combinations

Number of permutations of n distinct objects	$n! = n \times (n-1) \times (n-2) \dots \times 2 \times 1$
Number of combinations when choosing r objects from n objects	$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
Number of permutations of a subset of size r from a set of n distinct objects	${}^{n}P_{r} = {}^{n}C_{r} \times r! = \frac{n!}{(n-r)!}$
Number of permutations from n objects with r_A of type A , r_B of type B etc.	$\frac{n!}{r_A! r_B! \dots}$

Probability Problems

n(A)	The number of ways of making a choice about A
Product principle	$n(A \text{ and } B) = n(A) \times n(B)$
Addition principle (given that A and B are mutually exclusive)	n(A or B) = n(A) + n(B)
Counting principles in probability (given that all outcomes are equally likely)	$P(A) = \frac{\text{number of outcomes in which } A \text{ occurs}}{\text{total number of possible outcomes}}$

0

▶ Image: Second Second

Discrete Random Variables

Average and Spread of Discrete Random Variables

For the random variable taking the values x_i with $P(X = x_i) = p_i$ Expectation $\mu = E(X) = \sum x_i p_i$ Variance $\sigma^2 = Var(X) = \sum (x_i - \mu)^2 p_i$
 $= \sum x_i^2 p_i - \mu^2$
 $= E(X^2) - (E(X))^2$

Linear Coding with the Mean and Variance

For Y = aX + b: E(Y) = aE(X) + b $Var(Y) = a^{2}Var(X)$

Binomial Distribution

For
$$X \sim B(n, p)$$

 $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$
 $E(X) = np$
 $Var(X) = np(1-p)$

Discrete Uniform Distribution

For
$$X \sim U(n)$$

 $P(X = x) = \frac{1}{n}$ for $x = 1, 2, ..., n$
 $E(X) = \frac{n+1}{2}$
 $Var(X) = \frac{n^2 - 1}{12}$

▶ Image: Second Second

www.pmt.education

Geometric Distribution

For $X \sim Geo(p)$	
$P(X = x) = p(1 - p)^{x-1}$ for $x = 1, 2, 3$	
$P(X > x) = (1 - p)^x$	
$E(X) = \frac{1}{p}$	
$Var(X) = \frac{1-p}{p^2}$	

Poisson Distribution

For $X \sim Po(\lambda)$	
$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$ for $x = 0, 1, 2$	
$E(X) = \lambda$	
$Var(X) = \lambda$	

$X \sim Po(\lambda)$	When $Z = X + Y$,
$Y \sim Po(\mu)$	$Z \sim Po(\lambda + \mu)$

0

•

▶ Image: Second Second

Continuous Random Variables

Probability Density Function

Mean and Variance of a Continuous Probability Distribution

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$
$$= \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

Mean and Variance of a Function of a Continuous Variable

$$E(aX + c) = aE(X) + c$$
$$Var(aX + c) = a^{2}Var(X)$$
$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) dx$$

Cumulative Distribution Function

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

Probability density function = $f(x) = \frac{d}{dx}F(x)$

▶
 O

 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O
 Image: O

🕟 www.pmt.education

Median, Mode, and Percentiles of a Continuous Probability Distribution

Median (m)	$\int_{-\infty}^{m} f(x) dx = \frac{1}{2}$
Mode	Value of x when $f(x)$ is at the maximum
Lower Quartile (Q_1)	$\int_{-\infty}^{Q_1} f(x) dx = \frac{1}{4}$
Upper Quartile (Q_3)	$\int_{-\infty}^{Q_3} f(x) dx = \frac{3}{4}$

Continuous Uniform Distribution

If <i>X</i> follows a uniform distribution between [<i>a</i> , <i>b</i>]	
$f(x) = \frac{1}{b-a} \text{ for } a < x < b$	
$E(X) = \frac{a+b}{2}$	
$Var(X) = \frac{(b-a)^2}{12}$	

()

▶ Image: Second Second

🕟 www.pmt.education

Exponential Distribution

For $X \sim Exp(\lambda)$ $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ $E(X) = \frac{1}{\lambda}$ $Var(X) = \frac{1}{\lambda^2}$ $F(x) = \begin{cases} 0, & x < 0\\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$

Normal Distribution

For $X \sim N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $E(X) = \mu$ $Var(X) = \sigma^2$

Linear Combinations of Random Variables

Linear Combination of Any Independent Variables

Where X and Y are independent random variables E(aX + bY + c) = aE(X) + bE(Y) + c $Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y)$

log www.pmt.education

Hypothesis Tests and Confidence Intervals

Expectation and Variance of the Sample Mean

$$E(\bar{X}) = \mu$$
$$Var(\bar{X}) = \frac{\sigma^2}{n}$$

Sampling Distribution

For
$$X \sim N(\mu, \sigma^2)$$

 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
 $\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$

Unbiased Estimate of the Population Mean and Variance

$$\bar{x} = \frac{\sum x}{n}$$
$$s^{2} = \frac{n}{n-1} \left(\frac{\sum x^{2}}{n} - \left(\frac{\sum x}{n} \right)^{2} \right)$$

Central Limit Theorem

The mean of any distribution with $E(X) = \mu$, $Var(X) = \sigma^2$ and n > 25 can be approximated to have a normal distribution

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

▶ Image: Second Second

Confidence Intervals

For a population with known variance and normally distributed sample mean	
$c\%$ confidence interval for population mean (μ)	$\left(\bar{x} - z\frac{\sigma}{\sqrt{n}}, \bar{x} + z\frac{\sigma}{\sqrt{n}}\right)$ Where $z = \Phi^{-1}\left(0.5 + \frac{\frac{1}{2}c}{100}\right)$
Width of confidence interval	$2z\frac{\sigma}{\sqrt{n}}$

www.pmt.education 🖸 💿 💽 PMTEducation

()

()

Chi-squared Tests

Contingency Tables

Expected value in cell <i>i</i>	$E_i = \frac{\text{row total} \times \text{column total}}{\text{overall total}}$
Chi-squared value	$\chi_{\rm calc}^2 = \frac{\sum (O_i - E_i)^2}{E_i}$
Degrees of freedom in an $n \times m$ contigency table	v = (n-1)(m-1)

Hypothesis Testing

If variables are independent and $E_i > 5$ for all i $\chi^2_{calc} = \frac{\sum (O_i - E_i)^2}{E_i} \approx \chi^2_v$

Yates' Correction

When
$$v = 1$$

 $\chi^2_{\text{Yates}} = \frac{\sum |(O_i - E_i| - 0.5)^2}{E_i}$

Goodness of Fit Test

v = number of bins – number of constraints

Expected frequency in bin A = probability of being in bin $A \times$ total observed frequency

▶ Image: Second Second

www.pmt.education

Non-parametric Tests

Single Sample Sign Test

For a sample of size *n*

- 1. Count the number of observed values above the median stated in H_0 .
- 2. Find the probability of this value or higher using B(n, 0.5).

Single Sample Wilcoxon Signed Rank Test

- 1. Assigned ranks according to the differences from median in the order of increasing size.
- 2. Add a negative sign to the ranks for values below median.
- 3. Test statistic T is the smaller of W_+ (sum of positive ranks) and W_- (sum of negative ranks).

Wilcoxon Rank Sum Test

For two samples of sizes m and n where $m \leq n$

 $R_m =$ sum of ranks of items in sample of size m where a lower rank is given to smaller values

Test statistic = W = smaller of R_m and $m(m + n + 1) - R_m$

Approximate Distribution for Large Samples

Wilcoxon Signed Rank
test
$$T \sim N\left(\frac{1}{4}n(n+1), \frac{1}{24}n(n+1)(2n+1)\right)$$
Wilcoxon Rank Sum test
(sample of sizes m and n ,
where $m \leq n$) $W \sim N\left(\frac{1}{2}m(m+n+1), \frac{1}{12}mn(m+n+1)\right)$

www.pmt.education

Correlation

Pearson's Product Moment Correlation Coefficient

Spearman's Rank Correlation Coefficient

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

where d = difference in ranks and n = number of data pairs

Linear Regression

Least Squares Regression Line

$$y = ax + b$$
$$a = \overline{y} - b\overline{x}$$
$$b = \frac{S_{xy}}{S_{xx}} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$

 (\mathbf{c})

Network www.pmt.education