

Edexcel Further Maths A-level Further Statistics 2

Formula Sheet

Provided in formula book

Not provided in formula book

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Linear Regression

Equation of the regression line of y on x:

$$y = a + bx$$

$$b = \frac{S_{xy}}{S_{xx}}, a = \bar{y} - b\bar{x}$$

Summary Statistics

For a set of n pairs of values (x_i, y) :

$$S_{xx} = \Sigma (x_i - \bar{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$$

$$S_{yy} = \Sigma (y_i - \bar{y})^2 = \Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}$$

$$S_{xx} = \Sigma(x_i - \bar{x})(y_i - \bar{y}) = \Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}$$

Product Moment Correlation Coefficient

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\{\Sigma(x_i - \bar{x})^2\}\{\Sigma(y_i - \bar{y})^2\}}} = \frac{\Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}}{\sqrt{\left(\Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}\right)\left(\Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}\right)}}$$

Residual Sum of Squares (RSS)

$$RSS = S_{yy} - \frac{(S_{xy})^2}{S_{xx}} = S_{yy}(1 - r^2)$$

Spearman's Rank Correlation Coefficient

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

 $r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$ n = number of pairs of observations d = difference between ranks of each observation

r = -1	r = 0	r = +1
Rankings are in exact	No correlation	Rankings in perfect
reverse order	between rankings	agreement

Continuous Probability Distributions

For a continuous random	$f(x) \ge 0$ for all $x \in \mathbb{R}$
variable X with probability density function $f(x)$:	$P(a < X < b) = \int_{a}^{b} f(x) dx$
	$\int_{-\infty}^{+\infty} f(x) \ dx = 1$

Probability density function	$f(x) = \frac{dF(x)}{dx}$
Cumulative distribution function	$F(x_o) = P(X \le x_o) = \int_{-\infty}^{x_o} f(x) dx$

Expectation (mean)	$E(X) = \mu = \int x f(x) dx$
Variance	$Var(X) = \sigma^2 = \int (x - \mu)^2 f(x) dx = \int x^2 f(x) dx - \mu^2$
For a function $g(X)$:	$E(g(X)) = \int g(x)f(x) dx$
Median, m	$\int_{a}^{m} f(x) \ dx = 0.5$
Lower quartile, $\it Q_1$	$\int_{a}^{m} f(x) \ dx = 0.25$
Upper quartile, $\it Q_{ m 3}$	$\int_{a}^{m} f(x) \ dx = 0.75$
n^{th} percentile	$\int_{a}^{m} f(x) \ dx = \frac{n}{100}$
Mode	$\frac{df(x)}{dx} = 0$ (value at which the p.d.f is a maximum)

$$E(aX + b) = aE(X) + b$$
 $Var(aX + b) = a^{2}Var(X)$

Skewness

Positive skew	mode < median < mean
Negative skew	mean < median < mode

Continuous Uniform Distribution

Probability	$f(x) = \begin{cases} \frac{1}{b-a}, & \\ \frac{1}{b-a},$	$a \le x \le b$,
density function		otherwise

Mean	$\frac{a+b}{2}$
Variance	$\frac{(b-a)^2}{12}$
Probability distribution function	$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$

Combination of Random Variables

If X, Y are random variables:	E(X + Y) = E(X) + E(Y)
	E(X - Y) = E(X) - E(Y)
	$E(aX \pm bY) = aE(X) \pm bE(Y)$
If <i>X</i> , <i>Y</i> are independent random variables:	Var(X + Y) = Var(X) + Var(Y)
	Var(X - Y) = Var(X) + Var(Y)
	$Var(aX \pm bY) = a^2Var(X) + b^2Var(Y)$

If X and Y are independent random variables with $X \sim N(\mu_x, \sigma_x^2)$ and $Y \sim N(\mu_y, \sigma_y^2)$:

$$aY + bX \sim N(a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2)$$

$$aY-bX\sim N(a\mu_x-b\mu_y,a^2\sigma_x^2+b^2\sigma_y^2)$$

If X_1, X_2, \dots, X_n are independent identically distributed random variables with $X_i \sim N(\mu, \sigma^2)$:

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

Estimates and Tests Using a Normal Distribution

 S^2 – unbiased estimator for σ^2 (random variable)

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

s² – estimate (observation from a random variable)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{S_{xx}}{n-1} = \frac{n}{n-1} \left(\frac{\sum x^{2}}{n} - \bar{x}^{2} \right) = \frac{1}{n-1} \left(\sum x^{2} - n\bar{x}^{2} \right)$$

 \bar{X} is an unbiased estimator of μ , with $Var(\bar{X}) = \frac{\sigma^2}{n}$

Standard deviation of an estimator is $standard\ error = \frac{\sigma}{\sqrt{n}}$

Central Limit Theorem

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

If the population is assumed to be normal, then, for large samples, the statistic $\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ has an approximate $N(0,1^2)$ distribution.

If the population is not normal, by assuming that s is a close approximation to σ , then for large samples, $\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}$ can be treated as having an approximate $N(0,1^2)$ distribution.

For a random sample of n observations from $N(\mu, \sigma^2)$,

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

For a random sample of n_x observations from $N(\mu, \sigma^2)$ and, independently, a random sample of n_y observations from $N(\mu_y, \sigma_y^2)$,

$$\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0,1)$$

Confidence Intervals

$$(\bar{x} - z \times \frac{\sigma}{\sqrt{n}}, \bar{x} + z \times \frac{\sigma}{\sqrt{n}})$$

where z is the relevant percentage point from the standard normal distribution.

Example:

95% confidence interval for
$$\mu$$
: $\left(\bar{x} - 1.96 \times \frac{\sigma}{\sqrt{n}}, \bar{x} - 1.96 \times \frac{\sigma}{\sqrt{n}}\right)$

Variance of a Normal Distribution

If a random sample of n observations X_1, X_2, \ldots, X_n is selected from $N(\mu, \sigma^2)$ then $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$

For a probability of α that the variance falls outside the limits:

· · · · · · · · · · · · · · · · · · ·	
The $100(1-\alpha)\%$ confidence limits are:	$\frac{(n-1)s^2}{\chi_{n-1}^2\left(\frac{\alpha}{2}\right)} \text{ and } \frac{(n-1)s^2}{\chi_{n-1}^2\left(1-\frac{\alpha}{2}\right)}$
The $100(1-\alpha)\%$ confidence interval for the variance of a normal distribution is:	$\left(\frac{(n-1)s^2}{\chi_{n-1}^2\left(\frac{\alpha}{2}\right)}, \frac{(n-1)s^2}{\chi_{n-1}^2\left(1-\frac{\alpha}{2}\right)}\right)$

F-distribution

For a random sample of n_x observations from an $N(\mu_x, \sigma_x^2)$ distribution and an independent random sample of n_y observations from an $N(\mu_y, \sigma_y^2)$ distribution,

$$\frac{S_x^2/\sigma_x^2}{S_y^2/\sigma_y^2}{\sim} F_{n_x-1,n_y-1}$$

If a random sample of n_x observations is taken from a normal distribution with unknown variance σ^2 and an independent random sample of n_y observations is taken from a normal distribution with equal but unknown variance, then

$$\frac{S_x^2}{S_y^2} \sim F_{n_x - 1, n_y - 1}$$

$$F_{\nu_1,\nu_2} = \frac{1}{F_{\nu_2,\nu_1}}$$

t-distribution

For a random sample of n observations from $N(\mu, \sigma^2)$:

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

For a small sample of size n from a normal distribution $N(\mu, \sigma^2)$ with unknown mean and variance:

The $100(1 - \alpha)\%$ confidence limits for the population mean are:

$$\bar{x} \pm t_{n-1} \frac{\alpha}{2} \times \frac{s}{\sqrt{n}}$$

The $100(1 - \alpha)\%$ confidence interval for the population mean is:

$$\left(\bar{x} - t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}, \bar{x} + t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}\right)$$

Paired t-test

(two independent normal distributions X, Y with equal unknown variances)

In a paired experiment with a mean of the differences between the samples of \overline{D} :

$$\frac{\overline{D} - \mu_D}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

Pooled estimate for σ^2 :

$$s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$$

$$s_x^2 = \frac{\sum x^2 - n_x \bar{x}^2}{n_x - 1} \quad , \quad s_y^2 = \frac{\sum y^2 - n_y \bar{y}^2}{n_y - 1}$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{S_p^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim t_{n_x + n_y - 2}, \text{ where } S_p^2 = \frac{(n_x - 1)S_x^2 + (n_y - 1)S_y^2}{n_x + n_y - 2}$$

Confidence limits for the difference between the two means of *X* and *Y*:

$$(\bar{x} - \bar{y}) \pm t_c s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$$

Confidence interval:

$$\left((\bar{x}-\bar{y})-t_c s_p \sqrt{\frac{1}{n_x}+\frac{1}{n_y}},(\bar{x}-\bar{y})+t_c s_p \sqrt{\frac{1}{n_x}+\frac{1}{n_y}},\right)$$

 $t_c\,$ - relevant value from t-tables

