Mean of a normal distribution with unknown variance

an an the population variance, you can construct a confidence interval for the pulation mean,

If the sample size, n, is large then you often will not know the population variance. Instead, the sample n iss can be used as a good approximation.
 odenote $\frac{\bar{x}-\mu}{s}$
ecause of this, we consider a different distribution for small values of n
If a random sample $X_{1}, X_{2}, \ldots, X_{n}$ is selected from a normal distribution with mean μ and unknown variance s^{2}, then $t=\frac{\bar{x}-\mu}{s}$ has a a t_{n-1}-distribution where $S^{2}=\frac{1}{n}\left(\sum x^{2}-n \bar{x}^{2}\right)$, which is an unbiased estimator of σ^{2}. The t-distribution has degrees of freedom, $v=n-1$, and as $v \rightarrow \infty$, the t-distribution becomes more and nore similar to th
Much like with the F-distribution and the chi-squared distribution, the degrees of freedom affect the critical when working with any distribution that uses tables, tit s so important to do draw a diagram to to avoid simple mistakes.
Example 1 : The random variable X has a t-distribution with 12 degres of freedom. Determine values of t for which: i)
$\sim(X>t)=0.01$, iil $P(X<t)=0.9$, iiil $P(X \mid>t)=0.1$. (You will need the statistical table from the formula book)

As stated at the top of the table, the values in
the table are those which the table are those which a random variable
that follows the t-distribution with \mathbf{y}.agrees of freedom will exceed with the probability shown on the top row. As we are looking for

For $P(X<t)$, we are looking at the area to the leff of the line that we draw. We can use the
fact that the area under the curve is 1 to work fact that the area under the curve is 1 to work
out the area that we need using the values in the table.

If $P(X<t)=0.9$, then
$P(X>t)=1-0.9=0.1$
$P(|X|>t)=P(X<-t)+P(X>t)$. We
need to read off the value for $P(X>t)$ and use the symmetry of the graph to find the other t value, which will be the negative of the
one we have found. Remember as this is a two one
tailed problem the total of the two tails must add up to the probability given in the question.
$P(X<-t)+P(X>$
$=0.1$, so each $t)=0.1$ so each tail tas an area of 0.05.
Due to the symmetry of
the graph, the t-values will be a negative of
each other.
So we read off where $P(X>t)=0.05$, by looking at the intersection of the $v=12$ row with the e 0.05 column and
find $t_{12}(0.05)=1.782$. The t-value in the question is therefore 1.782 and the other tail is found below $t=$
given number
Example 2: The random variable Y has a t_{6}-distribution. Determine $P(Y<1.440)$
From looking at the $v=6$ row, we can see that 1.440 is
in the 0.10 column, but we need to pay attention to the From the table, $P(Y>1.440)=0.1$ direction of the in fact that, the area under the curve is 1.440), so using the fact that the area under the curve is 1 , we know that
$P(Y<1.440)=1-P(Y>1.440)=1-0.1=0.9$

You can also use the t-distribution to find a confidence interval for the mean of a normal distribution where the sample variance is unknown. As shown before, a sample taken from a normal distribution with an unknown variance $t=\frac{\bar{x}-\mu}{\sqrt{\sqrt{n}}}$ has a t_{n-1}-distribution:
For a small sample size
For a small sample size n from a normal distribution $N\left(\mu, \sigma^{2}\right)$ with an unknown and variance.
The $100(1-\alpha) \%$ confidence limits for the population mean, μ, ar

$$
\bar{x} \pm t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}
$$

The $100(1-\alpha) \%$ confidence interval for the population mean, $\mu_{,}$is

$$
\left(\bar{x}-t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}, \bar{x}+t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}\right)
$$

$$
\begin{aligned}
& \text { terval for the population mean, } \mu, \text { is } \\
& \left(\bar{x}-t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}, \bar{x}+t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}\right)
\end{aligned}
$$

2ample 3: A sample of 8 bisceits are taken by a qulity control inspector in a factory and the weight in grams a

 measured. The weights are as follows: 15, 14.5, 16.5, 14.7, 13.9, 15.4, 13.6,16.7. Assuming the weight of the biscuits are normally distributed, find a 95% confidence interval for the mean weight of biscuits in the factory. Find the sample mean and variancePut the values you have found into the formula

Using a calculator gives $\overline{\bar{x}}=15.0335, s=1.121$
$\bar{x}=15.0375, s=1.211, n=8, \alpha=0.05$,
Put the values you have found into the formula
$\left(\bar{x}-t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}, \bar{x}+t_{n-1}\left(\frac{\alpha}{2}\right) \times \frac{s}{\sqrt{n}}\right)$
$\bar{x}=15.0375, s=1.211, n=$
$t,(0.025)=2.365$.
so the confidence interval is
$15.0375 \pm(2.365) \times \frac{1.21}{\sqrt{8}}$
Hypothesis test for the mean of a normal distribution with unknown variance
oconduct a hypothesis test of a normal distribution with unknown vari
lesting a mean of a normal d distribution with known variance:

1. State the null hypothesis H_{0} and the alternative hypothesis H_{1}

Specify the significance level, α, and the number of degrees of freedom,
3. Write down the critical region

Calculate \bar{x}, s^{s} and t - remember these are sample parameters
Write the conclusion, explaining if the result is significant, and then link it back to the original problem
Example 4: The last time a town took a census, the mean height of adult women was 164 cm . After increasing the mount of food produced, a sample of 6 women were measured and the mean height was 167.5 cm . The heights of the momen are assumed to be normally distributed, and an estimate for the standard deviation of the heights of women based on the sample of 6 is 3 cm . Test, at the 5% significance level whether the women in the town have gotten taller.
State the hypotheses
State the significance
Find the critical vanlue on the the degrees of freedom Find the critical value on the table by looking at the
value in the $5^{\text {th }}$ row and the column labelled 0.05 . We need a positive t-value as we are doing a right-tailed test

$$
\begin{aligned}
& \text { The critical. } \\
& t \geq 2.015 .
\end{aligned}
$$ Use the values of s and \bar{x} given to calculate t.

Accept or reject the null hypothesis
Put the conclusion in terms of the original problem

$$
\begin{aligned}
& \alpha=0.05 \text { (one-tailed test), } v=6-1=5 \\
& \text { The critical value } t_{5} \text { is } 2.015 \text {, so the critical region is }
\end{aligned}
$$

As $2.015<2.858, \mathrm{t}$
H_{0} is rejected. There is sufficient evidence to suggest that the mean
height of the height of the
gotten taller
Make sure to pay attention to the wording in the question-

The paired t-tes

is often useful to test the 'before' and 'after' of an experiment, for example how effective a treatment is for increasing heaction times. For these types of tests, a result in one sample is paired with the result in another sample and is therefore referred to as paired. In paired experiments se foccus on the difference, D, between the results, which we he t-distribution. often we take $H_{0}: \mu_{D}=0$, as in there is no difference between the two populations.
With \bar{D} is the mean of the differences between the samples:

$$
\begin{aligned}
& \text { e samples: } \\
& \frac{\bar{D}-\mu_{D}}{\frac{S}{\sqrt{n}}} \sim \tau_{n-} \\
& \frac{1}{\sqrt{n}}
\end{aligned}
$$

The paired t-test proceeds in a very similar way to the
calculate the difference between the two samples.
Example 5: A class of students take a maths test, scored out of 50 , and then listen to a seminar about improving problem

Test, at the 5% significance level, whether or not the seminar improved the student's maths test performances.

State your hypotheses, significance level, the number of
degrees
degrees of freedom and therefore the critical value

Find the
\bar{d} and s^{2}

Calculate the
we are testin
improved the student's maths test perfo
$H_{H}: \mu_{d}=0, H_{1} \mu_{d}>0$
Significance level 0.05, one tailed test From the table, the critical value $t_{10}(0.05)=1.812$, thus the critical region is $t \geq 1.812$ $\bar{d}=\frac{\sum d}{n}=\frac{16}{11}=1.4545$
$\bar{d}=\bar{n}=\overline{1}=1.4545$
$s^{2}=\frac{\sum d^{2}-n \bar{d}^{2}}{n-1}=\frac{146-11(1.45)^{2}}{10}$ $n-1=14.4545$
$\bar{d}-\mu_{D} 1.4545-0$ $t=\frac{\bar{d}-\mu_{D}}{\frac{s}{\sqrt{n}}}=\frac{1.4545-0}{\frac{\sqrt{14.4545}}{\sqrt{11}}}$
$1.2688<1.812$, so the result isn't statistically significant and we do not reject H_{0}. There is insufficient evidence to suggest that the seminar improved the student's. There is insufficient eviden
maths test performances.
of two independent normal distribution
Difference between means of two independent normal dist bution
It is possible to tind a confidence interval for hed edifererce between
unknown but equal variances by finding a pooled estimate of variance. independent sample of n_{y} y observations is taken from a normal distribibution that also has unknown variance

$$
s_{p}^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2} \text {, where } s_{x}^{2}=\frac{\sum x^{2}-n_{x} \bar{x}^{2}}{n_{x}-1} \text { and } s_{y}^{2}=\frac{\sum y^{2}-n_{y} \bar{y}^{2}}{n_{y}-1}
$$

If a random sample of n_{x} observations is taken from a normal distribution that has unknown variance σ^{2} and
an independent sample of n_{y} observations that is taken from a normal distribution with equal variance, then

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{S_{p} \sqrt{\frac{1}{n_{x}}+\frac{1}{n_{y}}}} \sim t_{n_{x}+n_{y}-1}, \text { where } S_{p}^{2}=\frac{\left(n_{x}-1\right) S_{x}^{2}+\left(n_{y}-1\right) S_{y}^{2}}{n_{x}+n_{y}-2}
$$

The confidence limits for the difference between two means from independent normal distributions X and Y, when the variances are equal but unknown are given by

$$
(\bar{x}-\bar{y}) \pm t_{c} s_{p} \sqrt{\frac{1}{n_{x}}+\frac{1}{n_{y}}}
$$

distribution tables, and therefore the confidence interval is given by

$$
\left((\bar{x}-\bar{y})-t_{c} s_{p} \sqrt{\frac{1}{n_{x}}+\frac{1}{n_{y}}},(\bar{x}-\bar{y})+t_{c} s_{p} \sqrt{\frac{1}{n_{x}}+\frac{1}{n_{y}}}\right)
$$

Example 6 . A packet of seeds were sown, with 10 being sown into normal compost, brand A , and 15 beine sown into new brand of compost with additional nutrients, brand B. After
measured in cm with the following results:
Brand A: 10.2, 11, 10.5, 9.7, 11.1. 9.3, 10.4, 11.3, 10.3, 9.4
Brand B: 12.4, 12.7.7.11.9, 11.3, $13.3,13.6,12.9,11.7,12.2,12.5,11.8,13,13.4,12.6,11.8$ are normally distributed and have the same variance.
Calculate $n_{x}, n_{y}, \bar{x}, \bar{y}, s_{x}^{2}$ and s_{y}^{2}.
For brand $\mathrm{A}: n_{x}=10, \overline{\bar{x}}=10.32, s_{x}^{2}=0.484$
For brand $\mathrm{B}: n_{y}=15, \bar{y}=12.43, s_{y}^{2}=0.473$,
Calculate s_{p}^{2}, the pooled estimate for σ^{2}
Find the relevant value from the t-table, rememberin that confide
percentage.

State the confidence limits
$(12.473-10.32) \pm 1.714 \times 0.6911 \sqrt{\frac{1}{15}+\frac{1}{10}}$ $=2.153 \pm 0.4836$
$=(1.6694,2.6366)$

Hypothesis test for the difference between means

Doing a hypothesis test for the difference of means is similar to every other hypothesis test you have done. Doing a Doing a hypothesis test for the difference of means is simiar to every
hypothesis test for two independent distributions with unknown variances require you to use the t-distribution.

Example 7

A class of 16 students, 8 boys and 8 girls have their heights measured. After analysis it was found that $\bar{x}=152 \mathrm{~cm}, \bar{y}$ $134 \mathrm{~cm}^{2}, s_{x}^{2}=43 \mathrm{~cm}^{2}, s_{l}^{2}=51 \mathrm{~cm}^{2}$ where x is the height of a boy and y is the height of a girl. Conduct a two-sample t -
test at the 10% significance level to detemine wether the mean
test at the 10%
by more 5 cm .
State your hypotheses,
significance level, the
significance evel, the
number of degrees of
freedom and therefore
the criticical
the critical value
Calculate s^{2}, the
Calculate $s_{\text {, }}^{2}$, the pooled
estimate for σ^{2}. Square
estimate for σ^{2}.Squ
root to obtain s_{p}.
Calculate tobserving tha
$\mu_{x}-\mu_{y}=5$
hypothesis
hypothesis
Conclude
$\begin{aligned} & H_{0}: \mu_{x}=\mu_{y}+5, H_{1}: \mu_{x}>\mu_{y}+5 \\ & \text { Significance level= 0.1, }\end{aligned}$
$=1.2688$

Significance level= $=.1$, one tailed test
$v=8+8-2=14$
From the table, the critical value $\begin{gathered}v=8+8-2=14 \\ t_{14}(0.1)=1.345 \text {, thus the critical region is } t \geq 1.345\end{gathered}$
,

$$
s_{p}^{2}=\frac{7 \times 43+7 \times 51}{8+8-2}=47
$$

$$
\begin{gathered}
s_{p}^{p}=\frac{8+8-2}{8+8}=4 \\
s_{p}=\sqrt{47}=6.8556 \ldots
\end{gathered}
$$

$3.792>1.345$ so t is in the critical region so reject H_{0} as there is sufficient evidence to suggest that the mean height of boys in the class is greater than the mean height of
girls by more than 5 cm .

